Avaliação de Políticas de Aprendizagem por Reforço para Modelagem Automática e Dinâmica de Estilos de Aprendizagem: Uma Análise Experimental

Autores

  • Fabiano A. Dorça
  • Luciano V. Lima
  • Márcia A. Fernandes
  • Carlos R. Lopes

DOI:

https://doi.org/10.13037/ria.vol9n2.106

Resumo

Um grande número de estudos atesta que a aprendizagem é facilitada se as estratégias de ensino estiverem de acordo com os estilos de aprendizagem do estudante, tornando o processo de aprendizagem mais eficaz, e melhorando o seu desempenho. Nesse contexto, este trabalho apresenta uma abordagem automática e dinâmica para modelagem de estilos de aprendizagem com base em aprendizagem por reforço. Três estratégias de aprendizagem diferentes são propostas e testadas por meio de experimentos. Os resultados obtidos são apresentados e discutidos, indicando a estratégia mais eficiente.

Downloads

Referências

CARMONA, C.; CASTILLO, G. Designing a Dynamic Bayesian Network for Modeling Students Learning Styles. In Eighth IEEE International Conference on Advanced Learning Technologies, p. 346–350, 2008.

DANINE, A.; LEFEBVRE, B.; MAYERS, A.. Tides-using bayesian networks for student modeling. In: Proceedings of the Sixth International Conference on Advanced Learning Technologies (ICALT’06). IEEE Computer Society, 2006.

FELDER, R.; SILVERMAN, L. Learning and teaching styles in engineering education. Journal of Engineering education, 78(7):674–681, 1988.

FELDER, R.; SPURLIN, J. Applications, reliability and validity of the index of learning styles. International Journal of Engineering Education, 21(1):103–112, 2005.

GARCÍA P. et al.. Evaluating Bayesian networks’ precision for detecting students’ learning styles. Computers & Education, 49(3):794–808, 2007.

GIRAFFA, L. . Uma arquitetura de tutor utilizando estados mentais. PhD thesis, Universidade Federal do Rio Grande do Sul. Instituto de Informática. Programa de Pós-Graduação em Computação, 1999.

GRAF, S.; KINSHUK. Advanced Adaptivity in Learning Management Systems by Considering Learning Styles. In Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology-Volume 03, p. 235–238, 2009. IEEE Computer Society.

GRAF, S.; KINSHUK; LIU, T. . Supporting teachers in identifying students’ learning styles in learning management systems: An automatic student modelling approach. Journal of Educational Technology & Society, 12(4):3–14, 2009.

GRAF, S.; LIN, T. Analysing the Relationship between Learning Styles and Cognitive Traits. In Advanced Learning Technologies, 2007. ICALT 2007. Seventh IEEE International Conference, p. 235–239. IEEE.

GRAF, S.; LIU, T. Identifying Learning Styles in Learning Management Systems by Using Indications from Students’ Behaviour. In: Advanced Learning Technologies, 2008. ICALT’08. Eighth IEEE International Conference, p. 482–486. IEEE, 2008.

GRAF, S.; LIU, T. C.; KINSHIK. Interactions Between Students Learning Styles, Achievement and Behaviour in Mismatched Courses. In: Proceedings of the International Conference on Cognition and Exploratory Learning in Digital Age (CELDA 2008), p. 223–230. IADIS International Conference.

GRAF, S.; VIOLA, S. Automatic student modelling for detecting learning style preferences in learning management systems. Citeseer, 2009.

KINSHUK; LIU, T.; GRAF, S. Coping with Mismatched Courses: Students’ behaviour and performance in courses mismatched to their learning styles. Educational Technology Research and Development, 57(6):739–752, 2009.

LIMONGELLI, C.; et al. Adaptive learning with the LS-plan system: a field evaluation. IEEE Transactions on Learning Technologies, p. 203–215, 2009.

MARZANO, R.; KENDALL, J. The new taxonomy of educational objectives. Corwin Pr, 2007.

MESSICK, S. Personal styles and educational options. Individuality in learning, p. 327–368, 1976.

Moodle (2010). http://www.moodle.org/.

PRICE, L. Individual differences in learning: Cognitive control, cognitive style, and learning style. Educational Psychology, 24(5):681–698, 2004.

ROBERTS, M.; ERDOS, G. Strategy selection and metacognition. Educational Psychology, 13(3):259–266, 1993.

SUTTON, R.; BARTO, A. Reinforcement learning: An introduction, volume 116. Cambridge Univ Press, 1998.

VILLAVERDE, J.; GODOY, D.; AMANDI, A. Learning Styles’ Recognition in elearning Environments with Feed-Forward Neural Networks. Journal of Computer Assisted Learning, vl. 22(3):197–206, 2006.

ZATARAIN-CABADA, R.; et al. A Kohonen Network for Modeling Students’ Learning Styles in Web 2.0 Collaborative Learning Systems. MICAI 2009: Advances in Artificial Intelligence, p. 512–520, 2009.

Downloads

Publicado

2014-09-23

Como Citar

Dorça, F. A., Lima, L. V., Fernandes, M. A., & Lopes, C. R. (2014). Avaliação de Políticas de Aprendizagem por Reforço para Modelagem Automática e Dinâmica de Estilos de Aprendizagem: Uma Análise Experimental. Revista De Informática Aplicada, 9(2). https://doi.org/10.13037/ria.vol9n2.106

Edição

Seção

Artigos