LABORATÓRIOS VIRTUAIS E AMBIENTES COLABORATIVOS VIRTUAIS DE ENSINO E APRENDIZAGEM APLICADOS NA CAPACITAÇÃO DE PROFISSIONAIS DE RADIOFARMÁCIA.

Roberto Correia de Melo, João Alberto Osso Jr, Carlos Henrique Veríssimo Ferreira

Universidade de São Paulo – IPEN

robertomelo2006@uol.com.br, jaosso@ipen.br, carloshvp@terra.com.br

Resumo:

A utilização de ambientes colaborativos virtuais (CVE, do acrônimo em inglês) juntamente com o uso de laboratórios virtuais (LV) tende a reforcar os efeitos positivos de atividades de capacitação que os utilizam, seja como meio de comunicação, ensino ou de aprendizagem. Ambientes integrados LV/CVE podem ser utilizados em todos os níveis do ensino formal (fundamental, médio e superior) e têm condições de tornarem-se um elemento-chave para complementar (ou substituir, nesse caso, provisoriamente) laboratórios reais de diferentes disciplinas de areas de ciências exatas, humanas ou saúde. O tema LV/CVE é multidisciplinar, envolve elementos do processo de informação, fatores das tecnologias da informação e comunicação (TIC), ambientes colaborativos virtuais, laboratórios virtuais, simulações, cognição, e-learning e realidade virtual (RV). E é um tema cujo tratamento teórico necessita especialmente da compreensão e aplicação de princípios de teorias cognitivas, dentre as quais selecionamos duas das mais relevantes mundialmente: inteligências múltiplas, de Gardner, e mindful learning, de Langer. Em artigo anterior, realizamos uma introdução geral ao tema LV/CVE e neste aprofundamos características dos mesmos, exemplificando-as por meio de um protótipo de LV/CVE voltado para a area de radiofarmácia, concebido a partir das características do ambiente do Projeto europeu VirRAD. As características e funcionalidades mencionadas para esse protótipo, no entanto, podem ser úteis para LV/CVEs em geral, de qualquer área de conhecimentos.

Palavras-Chave:

Laboratórios virtuais, ambientes colaborativos virtuais, inteligências múltiplas, mindful learning, radiofarmácia, simulação, cognição, aprendizagem colaborativa, realidade virtual.

Abstract:

The concurrent and simultaneous utilization of collaborative virtual environments (CVE) and virtual laboratories (VL) tends to increase a positive effect in cognitive enhancement activities for any knowledge area. Integrated VL/CVE environments can be useful in any educational level (fundamental, high-school and college) and can also be seen as a key-resource in order to complement (or even partially substitute) real labs from different disciplines of sciences. The VL/CVE theme is essentially multidisciplinary: encompasses information processing, IT & C components, VL and CVE principles and essentials, simulations, cognition, e-learning and virtual reality (VR). Also, the subject VL/CVE needs a deep comprehension of, at least, two cognitive theories: multiple intelligences and mindful learning. On the previous paper written about VL/CVE, a general introduction was given about this subject. Now it's being exposed more features of them, also showing a software prototype for radiopharmacy users, created

based on VirRAD. All features of this specific VL/CVE are, although, applicable in any VL/CVE.

Key-words:

Virtual laboratories, collaborative virtual environments, multiple intelligences, mindful learning, radiopharmacy, simulation, cognition, collaborative learning, virtual reality.

INTRODUÇÃO

A relevância do tema LV/CVE cresceu na década atual e tornou-se de interesse estratégico para a UNESCO, que passou a apoiar o tema por intermédio do seu *Committee on Data for Science and Technology* (CODATA), cujo foco de ação foi colocado em ajudar países em desenvolvimento a obter seus recursos para criar LV/CVE com ênfase em tecnologia, a fim de minorar os efeitos negativos de não possuírem laboratórios reais. (UNESCO, 2000)

Na visão de especialistas da UNESCO, LVs têm o potencial para representar um novo paradigma e uma nova cultura para as ciências, e seu uso pode gerar avanços significativos especialmente quando implantados em conjunto com abordagens cognitivistas de ensino e aprendizagem.

O potencial de benefícios de LV parece crescer exponencialmente quando os mesmos são utilizados em conjunto com ambientes colaborativos virtuais (CVE), em especial porque essa abordagem leva a maximizar os benefícios do uso simultâneo de fatores tecnológicos e cognitivos.

O tema LV/CVE é de natureza multidisciplinar: envolve fatores tecnológicos pertencentes, entre outros, às tecnologias da informação e comunicação (TIC), à comunicação mediada por computador (CMC) e à realidade virtual (RV). E envolve fatores cognitivos básicos, bem como os pertencentes a diferentes teorias cognitivas, dentre as quais selecionamos as teorias inteligências múltiplas, de Howard Gardner, e *mindful learning*, de Ellen Langer, ambos da Harvard University.

Nesse artigo, relata-se a experiência realizada de analisar a fundo o LV/CVE do Projeto *VirRAD* (um projeto europeu voltado para suportar profissionais de Radiofarmácia), bem como inclui-se uma proposta de aperfeiçoá-lo, partindo de conclusões tiradas sob as perspectivas das teorias cognitivas citadas, em um estudo de caso conduzido perante seus usuários

O CONTEXTO DE RADIOFÁRMACOS E RADIOFARMÁCIA

A Radiofarmácia é uma especialidade farmacêutica que se ocupa do planejamento, preparação, controle e dispensa (distribuição e ministração em pacientes) de compostos marcados (denominados *radiofármacos*) com qualidade farmacêutica, para utilização em Medicina Nuclear com fins diagnósticos e/ou terapêuticos.

Segundo THRALL e ZIESMANN (2003), radiofármaco é um fármaco, produto biológico ou droga que contém um elemento radioativo, que tanto pode ser utilizado para obtenção de imagem como agente diagnóstico quanto pode ser usado no combate a enfermidades. Radiofármacos são combinações de moléculas com radioisótopos, sendo que a molécula tem a missão de "carregar" o radioisótopo para dentro do órgão onde o radioisótopo vai "atacar" determinado tumor, a fim de neutralizá-lo.

Conforme IPEN (2009), radioisótopo é um elemento radioativo que tem uma configuração de elementos em seu núcleo que o torna instável e que tende à estabilização pela emissão de radiação. É produzido em reações nucleares que ocorrem em reatores nucleares, em aceleradores tipo ciclotron ou em geradores de radioisótopos.

FATORES TECNOLÓGICOS INTERVENIENTES EM LV/CVE

Os fatores tecnológicos intervenientes no tema LV/CVE podem ser divididos em três grupos: 1) os pertencentes às TIC, 2) os relativos à comunicação mediada por computador (CMC) e 3) os fatores referentes à realidade virtual (RV).

De acordo com ALEXIOU et al. (2006), dentre os fatores relacionados às TIC, os mais importantes e críticos são: redes de comunicação de dados de alta velocidade, bancos de dados distribuídos (em diferentes *sites* físicos e lógicos), recursos de informação e de comunicação (tais como vídeos, vídeo-conferência e *chat real-time*), além de fatores desejáveis como altas velocidades de renderização de imagens e alto grau de realismo dos aplicativos, obtidos por meio da utilização de recursos de RV e de, por exemplo, de avatares dentro do CVE.

Dentre os requisitos pertencentes à CMC, temos: *e-mail, bulletin-boards* (BBS), os conceitos primitivos do uso do computador como *tutor, tool, tuttee e toy* (cujos três primeiros compõem os "3T" propostos há décadas por cientistas norte-americanos), e a

visão de CMC como uma "ferramenta de pensar" (*mindtool*), na qual ela cumpre vários quesitos que contribuem para a funcionalidade do LV/CVE. (TAYLOR, 1980)

De acordo com KIRNER e TORI (2004), com referência ao grupo de RV, temos, entre outros, os pré-requisitos: displays gráficos, periféricos de comunicação e controle, dispositivos multisensoriais, uso de avatares, ambientes virtuais 3D, aplicativos *real-time*, entre outros.

Os fatores tecnológicos a serem considerados para qualquer LV/CVE, os acima citados, são importantes mas insuficientes para gerar um ambiente no qual pessoas possam produzir atividades com a profundidade tal como é desejada em processos de ensino e aprendizagem de alta qualidade. Para garantir a eficácia de um ambiente LV/CVE, é fundamental considerar também aspectos cognitivos.

FATORES COGNITIVOS INTERVENIENTES EM LV/CVE

De acordo com MELO (2009), há vários fatores cognitivos fundamentais intervenientes no tema LV/CVE, que devem ser analisados antes de se apreciar qualquer teoria cognitiva (porque formam conceitos primitivos em cognição), que são: a) desenvolvimento cognitivo, b) linguagem e pensamento, c) aprendizagem colaborativa, d) formação de significados em colaboração, e) aprendizagem em rede.

Entende-se que o desenvolvimento cognitivo de qualquer pessoa apresenta três características: a) ocorre em ritmos distintos de uma pessoa para outra, b) segue a mesma sequência em todos os indivíduos, independentemente da pessoa, c) ocorre sempre de modo gradual e passa por transições lentas. A relação entre linguagem e pensamento é outro fator-chave e apresenta aspectos *estruturais* (o conhecimento dos elementos da frase (a gramática), e o conhecimento de como combiná-los (a sintaxe)) e aspectos *funcionais* (referentes aos usos que se faz da linguagem para se comunicar, pensar e resolver problemas). Piaget propôs que o pensamento precederia a linguagem, enquanto Vygotsky propôs o contrário: para ele, a linguagem desempenharia o papel cognitivo mais crítico no processo de aprendizagem. A linguagem não só precederia o pensamento como também contribuiria para sua formação (ou seja, para Vygotsky, a linguagem *gera* o pensamento). (VIGOTSKI, 1999).

Já aprendizagem colaborativa, segundo DILLENBOURG (1999), é a situação na qual duas ou mais pessoas aprendem ou tentam aprender juntas algum assunto. Nesse

quesito, é importante atentar para: a) a idéia de "dois ou mais" pode englobar desde um par de pessoas até centenas ou milhares, o que traria agregados efeitos de escala; b) o próprio conceito de "aprender algo" pode ser interpretado de diferentes maneiras, tendo em vista diferentes teorias cognitivas e seus postulados; c) a condição descrita por "juntos" também pode ter diferentes sentidos relativos ao tempo e ao espaço.

No aspecto sobre formação de significados, de acordo com STAHL (2003) podese dizer que a elaboração de sentido é tida como uma atividade essencialmente social, que é conduzida juntamente (colaborativamente) por uma comunidade de pessoas, ao invés de ser conduzida por um indivíduo isoladamente. A base dessas atividades de colaboração, conhecidas sob a sigla *computer supported collaborative learning* (CSCL), constitui-se de quatro temas: 1) construção colaborativa de conhecimentos, 2) perspectivas pessoais e de grupos, 3) mediação de comunicação por meio de artefatos, 4) análise das interações ocorridas. A natureza dos significados tem um papel preponderante nas ciências, cuja análise remonta às origens da filosofia ocidental, sendo que, após as idéias de Kant e Hegel, a compreensão da formação dos significados tornou-se ainda mais relevante para as ciências da aprendizagem.

Sobre a aprendizagem em rede, de acordo MORRISON e COLLINS (1996), temse que o desenvolvimento da fluência epistêmica, entendida como a habilidade de uma pessoa para entender a praticar uma variedade de jogos epistêmicos, ocorre através de sua participação em jogos epistêmicos, não apenas observando-os ou ouvindo a respeito deles, mas desenvolve-se fluência epistêmica por meio da interação do aprendiz com outras pessoas que já sejam relativamente mais fluentes.

No que diz respeito às teorias cognitivas de nosso recorte, a teoria das inteligências múltiplas apontou inicialmente, de acordo com GARDNER (1995), que há oito tipos distintos de inteligências, que ocorrem nas pessoas simultaneamente e em diferentes proporções, sendo que cada tipo de inteligência é sensibilizado/estimulado/atendido de um modo diferente pelos recursos envolvidos em um LV/CVE. Os tipos de inteligências e os fatores cognitivos envolvidos nelas são mostrados na TAB. 1:

TABELA 1. Fatores cognitivos na teoria das Inteligências Múltiplas (MELO, 2009).

Inteligência	Pontos fortes	Preferências	Aprende melhor por	Necessita de
			meio de	
	Escrita, leitura, memo-	Escrever, ler, contar	Ouvir e ver pala-	Livros, cadernos,
VERBAL/	rização de datas,	estórias, conversar,	vras, falando, lendo,	instrumentos de
LINGUIS-	pensar em palavras,	memorizar, resolver	escrevendo	escrita, diálogos,
TICA	contar estórias	charadas		discussões.
	Matemática, lógica,	Questões, trabalho	Relacionamentos e	Fatos e fenome-
LÓGICO/	resolução de proble-	com números, ex-	padrões, classifi-	nos para pensar e
MATEMÁ-	mas, raciocínio, pa-	perimentos, resolver	cando, abstrações.	explorar, materiais
TICA	drões	problemas		científicos, mu-
				seus.
	Mapas, leitura, gráficos,	Desenhar, construir,	Trabalho com cores	LEGO, vídeos, fil-
VISUAL/	desenhos, visualiza-	desenvolver, criar,	e pinturas, visuali-	mes, slides, arte,
ESPACIAL	ções, abstrações	apreciar pinturas	zações, imaginação	jogos, quebra-
				cabeças
CORPÓ-	Esportes, dança, com-	Mover-se, tocar e	Toque, movimento,	Atuação, objetos
REO-	petições, uso de	falar, linguagem cor-	conhecimento por	para construir,
CINESTÉ-	ferramentas, atuação	poral	sensações	movimento, es-
SICA				portes
	Sons, lembrar-se de	Cantar, tocar um	Ritmo, melodia,	Tempo para
MUSICAL	melodias, ritmos, canto	instrumento, ouvir	ouvindo músicas e	cantar concertos,
		música	melodias	instrumentos
	Liderança, organização,	Falar a pessoas, ter	Comparando, rela-	Amigos, jogos
INTER-	resolver conflitos,	amigos, unir grupos	cionando, compar-	coletivos, eventos
PESSOAL	vender		tilhando	sociais, clubes
	Reconhecer pontos	Trabalhar sozinho,	Trabalhando	Lugares secretos,
INTRA-	fortes e pontos fracos,	refletir interesses	sozinho, refletindo,	tempo sozinho,
PESSOAL	estabelecer metas,		criando projetos	projetos próprios,
	compreender-se			escolhas
	Compreender a natu-	Estar envolvido com	Trabalhando com a	Ordem, padrões
NATURA-	reza, fazer distinções,	a natureza, tomar	natureza, explo-	iguais/diferentes,
LÍSTICA	identificar fauna e flora	decisões	rando seres vivos	conexões com a
				vida real

Os fatores referentes à teoria *mindful learning*, de Ellen Langer, que necessitam ser considerados em um LV/CVE são representados na TAB. 2. De acordo com LANGER (1997), há *sete mitos* prejudiciais às atividades de ensino e aprendizagem que as acometem frequentemente e, de acordo com LANGER (1989), há também *três atitudes* que caracterizam uma aprendizagem desatenta (*mindless*) (e suas recíprocas, que

caracterizam uma aprendizagem atenta (*mindful*)), fatores esses que, juntos, ocorrem comumente e precisam ser combatidos, seja em atividades de ensino tradicionais, seja nas que ocorrem dentro de um ambiente LV/CVE.

TABELA 2. Fatores cognitivos referentes à teoria Mindful Learning, (MELO, 2009)

Mito	Atitude	Descrição	
		Os fundamentos de um assunto devem ser aprendidos (e	
ML1		incorporados) tão profundamente a ponto de tornarem-se uma	
		segunda natureza da pessoa.	
ML2		Prestar atenção significa que o aprendiz está focado em um só	
		assunto de cada vez.	
ML3		É importante retardar gratificações, postergando-as para após a	
		finalização das atividades de aprendizagem.	
ML4		Memorização é um fator essencial no processo de ensino e	
		aprendizagem. Memorizar deve ser uma meta para o aluno.	
ML5		Esquecer é um problema: os assuntos importantes não podem ser	
		esquecidos pelos aprendizes.	
ML6		Inteligência é conhecer as coisas "exatamente como elas são" ou	
		conhecê-las exatamente como foram propostas.	
ML7		Existem somente respostas certas ou respostas erradas. Não há	
		espaço para "talvez".	
		Classificação de novos assuntos em categorias antigas	
	ML8		
		Comportamento automático que exclui atender a novos sinais	
	ML9		
		Adoção de ações que operam sob uma perspectiva única	
	ML10		

Os fatores referentes aos aspectos tecnológicos (referentes às TIC, CMC e RV) importantes para os usuários do LV/CVE *VirRAD* são representados na TAB. 3.

TABELA 3. Características tecnológicas desejáveis no LV/CVE Proposto (MELO, 2009)

	Característica desejável	Ações para reforçá-las	Aspecto
		Usar avatares em todas a funções de	
1	Uso de avatar	comunicação, ensino e aprendizagem	TC1
2	Maior exatidão	Aumentar exatidão dos processos	

		reproduzidos virtualmente.	TC2
3	Maior completeza	Aumentar detalhamento dos processos	
		reproduzidos virtualmente.	TC3
4	Maior usabilidade	Aumentar facilidade de uso dos processos	
		reproduzidos virtualmente.	TC4
5	Maior fidedignidade	Aumentar fidedignidade dos processos	
		reproduzidos virtualmente.	TC5
	Adequação de escala de	Aumentar correspondência à escala de tempo	
6	tempo	dos processos reproduzidos virtualmente. TC6	
7	Maior variedade de	Incluir processos ainda não considerados no	
	cenários	ambiente virtual. TC7	

Os objetivos buscados em nosso estudo de caso foram: a) identificar os tipos de inteligências predominantes nos usuários do LV/CVE *VirRAD*, b) identificar os mitos prejudiciais presentes neles, bem como as atitudes *mindless* que os afetam, c) identificar os fatores tecnológicos importantes para os usuários, para, após reuni-los na fase seguinte do trabalho, propor aperfeiçoamentos ao ambiente LV/CVE estudado.

CARACTERÍSTICAS DO LV/CVE VirRAD

De acordo com VIRRAD (2009), o projeto *VirRAD* foi iniciado em 2002, em cumprimento ao estabelecido no programa de 2001 da *Information Society Technologies* (IST), um grupo de trabalho da Comunidade Européia que visa atender às especificações da *European Association of Nuclear Medicine* (EANM).

Conforme ALEXIOU et al. (2004), o projeto de desenvolvimento do sistema *VirRAD* o dividiu em 4 áreas: 1) *Public website*: parte do *site* aberta a todos e que apresenta o projeto; 2) *Community*: parte do *website* que provê meios para que a comunidade de radiofarmácia se comunique e troque informações; 3) *Instructional component*: parte que facilita a interação entre aprendizes, autores, mentores, e que engloba o LV do projeto; 4) *Project internal site*: junção de recursos que permitem a comunicação interna entre os administradores do sistema.

O portal *VirRAD* está dividido em três partes: a) os recursos que implementam a comunidade virtual de ensino e aprendizagem, b) os recursos multimídia de

aprendizagem e c) as simulações de procesos de radiofarmácia possíveis de serem realizadas dentro do laboratório 3D RV.

RESULTADOS DO ESTUDO DE CASO

O questionário aplicado para o estudo de caso foi elaborado visando descobrir as características dos usuários do LV/CVE *VirRAD*, divididas em quatro seções: 1) identificação do respondente, 2) coleta de dados sobre seu perfil cognitivo, sob a perspectiva de inteligências múltiplas, 3) coleta de dados sobre seu perfil cognitivo, sob a perspectiva de *mindful learning*, e 4) levantamento dos dados sobre a percepção do usuários quanto aos aspectos tecnológicos presentes no LV/CVE.

Os resultados referentes aos fatores da teoria inteligências múltiplas são representados na TAB. 4. De acordo com os resultados, são predominantes entre os usuários as inteligências: verbal, lógico-matemática, visual-espacial, naturalística e inter-pessoal. E não são predominantes as inteligências: corpórea-cinestésica, musical e intrapessoal. Como todos os usuários detem todos os tipos de inteligências, em diferentes graus, os tipos já predominantes precisam ser estimulados a se manterem (ou aumentarem) e os tipos não predominantes precisam ser estimulados a tornarem-se presentes por meio da ativação/reforço de vários recursos no LV/CVE.

TABELA 4. Presença das oito inteligências nos usuários

Tipo	Inteligência	% de
		Presença
MI1	VERBAL	93.5
MI2	LÓGICO-MATEMÁTICA	76.1
MI3	VISUAL-ESPACIAL	89.1
MI4	CORPÓREA-CINESTÉSICA	45.6
MI5	NATURALÍSTICA	58.7
MI6	MUSICAL	32.6
MI7	INTRAPESSOAL	34.8
MI8	INTERPESSOAL	82.6

Os fatores referentes às *três atitudes* que caracterizam uma aprendizagem desatenta (*mindless*) levantados entre seus usuários são representados em itálico na TAB. 5, juntamente com os fatores recíprocos que caracterizam uma aprendizagem atenta (*mindful*), representados em caracteres normais. De acordo com os resultados obtidos, as três atitudes já são observadas/confirmadas pela maioria dos usuários.

TABELA 5. Visão dos usuários: mindless versus mindful (MELO, 2009)

Atitude	Descrição	% de
		confirmação
	(Classificação de novos assuntos em categorias antigas)	
ML8	Criação contínua de novas categorias de conhecimentos.	80.4
	(Comportamento automático que exclui atender a novos sinais)	
ML9	Abertura contínua a novas informações.	91.3
	(Adoção de ações que operam sob uma perspectiva única)	
ML10	Atenção implícita e simultânea a mais de uma perspectiva	67.4

Todos os fatores combinados necessários para aperfeiçoar o ambiente LV/CVE do Projeto *VirRAD* estão descritos nas TABs. 6 e 7. Nelas, há três colunas: a) o menu ao qual pertence a função indicada, b) a função, c) quais os aspectos das teorias cognitivas são atendidos pela função indicada. Por exemplo, a função **Cientistas de radiofarmácia** (**links**) do menu **Pessoas**, atende aos aspectos MI8 (ao tipo de inteligência interpesssoal) e ML10 (atenção implícita e simultânea a mais de uma perspectiva), da teoria *mindful learning*).

TABELA 6. Funcionalidade completa do LV/CVE Proposto (MELO, 2009).

Menu	Função	Satisfaz aspectos
	1.FAQs/Documentação	
Geral	2.Projetos Relacionados	2. ML6,ML8,TC7
	3.Search-engine	3. MI1
	1.Administradores	
Pessoas	2.Cientistas radiofarmácia (links)	2. MI8,ML10
	3.Perfís	
	4.Pesquisadores	

	1.Criação de simuladores	1. MI3,ML1,TC1
Instrutores	2.Criação de tutoriais (templates)	2. MI1,TC1
	3.Curso formação de instrutores	3. MI8,ML9,TC1
	4.Foruns (grupos especiais)	4. MI8,ML2,TC1
	5.Pessoas/contatos	5. MI8,ML10,TC1
3D VR Lab	1.Laboratório virtual (com avatar)	Ver Tabela 7
	1.Atividades	
	2.Cenários de radiofarmácia	
Estudantes	3.Foruns (iniciantes)	3. MI8,ML9,TC1
	4.Introdução	
	5.Simuladores	5. MI3,7,8,ML6,9,TC1,5,7
	6.Testes/avaliações	6.
	7.Tutoriais	MI2,ML4,ML7,ML8,TC1,TC3,TC4
	1.Acesso a Web	1. MI4,8,ML2,3,6,7,9,TC1,7
	2.Cursos on-line	2. MI8,ML1,2,3,6,10,TC1
	3.Formação de grupos	3. MI8,ML9,TC1
	4.Glossário	
	5.Hospitais	5. MI1,8,ML1-10,TC1,7
Recur-	6.Links com outros vlabs	6. MI1,8,ML1-10,TC1,7
sos	7.Mercado de radiofarmácia	7. MI1,8,ML1-10,TC1,7
	8.Notícias	
	9.Papers	
	10.Reações adversas	
	11.Search-engine	11. MI1,ML7,8
	12.Vídeo-conferência	12. MI3,8,ML2,6,9,TC1-7
	13.Vídeos	13. MI3,ML2,10,TC1-7

Em negrito: novas funções propostas (não existentes no VirRAD).

TABELA 7. Funcionalidade do LV/CVE Proposto – Menu 3D VR Lab (MELO, 2009)

Menu	Função	Satisfaz aspectos
	1.Acesso Web	1. MI8,ML3,ML6,ML9,TC1,7
	2.Animações	2. MI3,5,ML1,4,9,10,TC1
	3.Avaliações/check-points	3. MI1,ML7,8,9,10,TC7

	4.Avatar multi-user	
	5.Avatar single-user	
	6.Biblioteca	6. MI1,ML3,10,TC2
	7.Chat	
	8.Comparações com outros assuntos	8. ML8,ML9
	9.Cores	9. MI3,MI5,ML4,9,TC3,4
	10.Dicionário/tradutor simultâneo	10.TC1-7
	11.Dispositivos hápticos	11.MI4,ML6,TC5
3D	12.Histórico da utilização anterior	12.MI5,ML2,8,TC5
VR Lab	13.Imagens	13.MI3,ML6,10,TC2-7
	14.Integração com outros VR Labs	14.MI8,ML6,TC1-7
	15.Modo de estudo / modo de trabalho	
	16.Níveis de dificuldades diferentes	16.MI2,ML2,9,10,TC1-7
	17.Permitir formação de equipes c/ líder	17.MI4,MI6,ML2,TC1-7
	18. Propostas de novas categorias	18.ML8
	19.Reconhecimento de voz	19.MI4
	20.Recursos multimídia	20.MI3,MI8,ML9,TC1-7
	21.Simulações baseadas na natureza	21.MI5,ML6,10,TC1-7
	22.Simulações usando avatares	
	23.Sons, músicas, vinhetas	23.MI4,MI6,ML2,TC1-7
	24.Vídeo-conferência	24.MI4,MI6,ML2,TC1-7
	25. Vídeos de experimentos	25.MI4,MI6,ML2,TC1-7

Em negrito: novas funções propostas (não existentes Menu 3D VR Lab VirRAD).

PROTÓTIPO DE LV/CVE PARA RADIOFARMÁCIA

O protótipo do LV/CVE aperfeiçoado proposto para uso da comunidade internacional de radiofarmácia foi desenvolvido a partir dos princípios observados no desenvolvimento do Projeto *VirRAD*, e acrescidas funções que descobrimos serem importantes para os membros da comunidade quando da realização da pesquisa para o estudo de caso. O protótipo do software foi desenvolvido em uma plataforma Windows, utilizando-se a tecnologia ASP com HTML/JavaScript, com interface gráfica elaborada com Front-Page. O software tem seu ponto forte na sua navegabilidade, proporcionando melhor aproveitamento aos usuários deste ambiente colaborativo, e suas telas são demonstradas nas Fig. 1 a 7. A referência comum a todas as figuras é (MELO, 2009).

Figura 1 – LAB 3D IPEN – Tela de apresentação

Figura 2 – LAB 3D IPEN – Tela GERAL

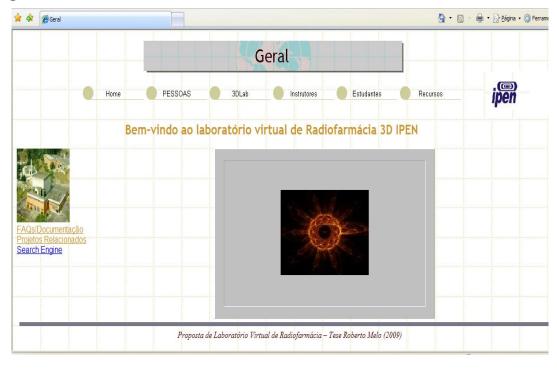


Figura 3 – LAB 3D IPEN – Tela PESSOAS

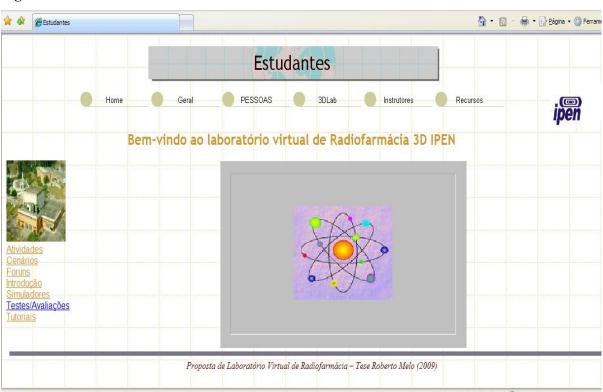

Figura 4 - LAB 3D IPEN - Tela 3DLab

Figura 5 – LAB 3D IPEN – Tela Instrutores

Figura 6 –LAB 3D IPEN – Tela Estudantes

Recursos

Recursos

Home Geral PESSOAS 3DLab Instrutores Estudantes

Bem-vindo ao laboratório virtual de Radiofarmácia 3D IPEN

Atividades
Adverse Reactions
Cursos On-Line
Formação de Grupos
Glossário
Hospitais
Links com Outros VLABs
Noticias
Pagers
Radiopharmacy Market
Search Engine
Video Corterência
Videos
WEB

Proposta de Laboratório Virtual de Radiofarmácia – Tese Roberto Melo (2009)

Figura 7 – LAB 3D IPEN – Tela Recursos

CONSIDERAÇÕES FINAIS

Os temas LV e CVE têm sido abordados isoladamente até o momento mesmo na literatura especializada internacional, porém nossa visão é de que ambos devem ser implantados e utilizados conjuntamente, a fim de gerarem os benefícios potenciais que os mesmos tem a capacidade de ocasionar.

Ambientes integrados LV/CVE de ensino e aprendizagem ainda são pouco conhecidos no Brasil e, consequentemente, também é pouco difundida sua utilização em atividades de comunicação e capacitação, privando estudantes e profissionais brasileiros de beneficiarem-se plenamente desses recursos.

Dentre os ambientes LV/CVE em uso internacionalmente, estudamos em detalhes os conceitos teóricos do *VirRAD* – Virtual Radiopharmacy, juntamente com a análise dos fatores tecnológicos e cognitivos intervenientes nesse tema, e dessa análise (e do estudo de caso conduzido junto a usuários do *VirRAD*, sob perspectivas das teorias cognitivas inteligências múltiplas e *mindful learning*), obtivemos as propostas de melhorias ao *VirRAD* apresentadas neste artigo e acopladas ao protótipo de um LV/CVE que engloba todas as características desejáveis.

REFERÊNCIAS

ALEXIOU, A., BOURAS, C., GIANNAKA, E. (2006) *Virtual laboratories in education*. A cheap way for schools to obtain laboratories for all courses, by using the computer laboratories. Disponível em http://ru6.cti.gr/publications/1009.pdf >. Acesso em: 10 de setembro de 2006.

ALEXIOU, A., BOURAS, C., GIANNAKA, E., KAPOULAS, V., NANI, M., TSIATSOS, T. (2004). *The Virtual Radiopharmacy Laboratory*: A 3D Simulation for Distance Learning. Computer Engineering and Informatics Department. University of Patras, Greece.

DILLENBOURG, P. (1999) What do you mean by 'collaborative learning'? In: Collaborative learning: cognitive and computational approaches. Dillenbourg, P. USA: Pergamon Press.

GARDNER, H. E. (1995) *Inteligências múltiplas:* a teoria na prática. Trad. Maria A. V. Veronese. Porto Alegre. Editora Artes Médicas.

IPEN (2009) *Centro de radiofarmácia*. Perguntas e respostas. http://www.ipen.br/sitio/?idm=258 Acesso em 20 de janeiro de 2009.

KIRNER, C., TORI, R. (Ed.) (2004). *Realidade Virtual*: conceitos e tendências. Pré-Simpósio SVR 2004. São Paulo: Mania do Livro.

LANGER, E. J. (1989) Mindfulness. Perseus books. Reading. Massachussetts, USA.

LANGER, E. J. (1997) *The Power of Mindful Learning*. Perseus books. Reading. Massachussetts, USA.

MELO, R. C. (2009) Estudo dos pressupostos tecnológicos e cognitivos de laboratórios virtuais e ambientes colaborativos virtuais para radiofarmácia. Tese de doutorado. IPEN-CNEN/SP-USP.

MORRISON, D., COLLINS, A. (1996). *Epistemic Fluency and Constructivisty Learning Environments*. In: WILSON, B. (Ed.) Constructivisty Learning Environments. P.107-119, USA:New Jersey: Educational Technology Publications.

STAHL, G. (2003) *Meaning and interpretation in collaboration*. In: Designing for changed networked learning environments. Wasson, B., Kluwer academic. UK.

TAYLOR, R. (ed.) (1980) *The computer in the school*: tutor, tool, tutee. Teachers College Press, New York.

THRALL, J., ZIESSMAN, H. (2003) *Medicina nuclear*. Trad. Maria Expósito Penas. Editora Guanabara Koogan, S.A. Rio de Janeiro. 2003.

UNESCO Report. (2000) *The emergence of virtual laboratories*: towards new policies and strategies for knowledge handling. Disponível em: http://www.codata.org.2000. Acesso em 03 agosto de 2006.

VIGOTSKI, L. S. (1999) *Pensamento e linguagem*. Trad. Jefferson Luiz Camargo. São Paulo, Editora Martins Fontes.

VIRRAD (2009) *Virtual radiopharmacy VirRAD*. Public pages. http://www.virrad.org/public/public/ index2.html Acesso em 10 de janeiro de 2009.