
Revista de Informática Aplicada, Volume 13, Número 2, 2017

C

M

Y

CM

MY

CY

CMY

K

A9R598.pdf 1 22/02/2018 21:49:24

A Generalized Functional Testing Approach for Application
Services Development

Thiago Nascimento Rodrigues1

Regional Election Court of Paraná - TRE/PR
Systems Development Department

Rua João Parolin, 224, 80220-902, Curitiba, PR, Brazil

Resumo

O projeto de arquiteturas de testes flexíveis para a avaliação de sistemas tem desafiado equipes de tes-
tadores e desenvolvedores ao longo de distintos processos de desenvolvimento de software. Os desafios
envolvem arquitetura de testes tanto módulos simples como camadas inteiras de sistemas. Neste cenário,
o presente trabalho propõe uma abordagem de testes baseada em testes funcionais. Cada módulo de
sistema (application service) é encarado como uma caixa-preta e uma abordagem alternativa de projetar
casos de testes é apresentada. O conceito de testes funcionais generalizados é analisado sob a perspectiva
de casos de testes mais informativos e mais aptos a garantir a qualidade de um dado application service.
O foco no reuso de instâncias de dados de testes destaca o pontencial do modelo sugerido.

Palavras-chave: testes funcionais, application services, desenvolvimento de sistemas.

Abstract

The design of flexible test architectures for software evaluation has been challenging testers and devel-
opers teams throughout distinct software development processes. The challenges involve both a simple
software module and a whole software layer. In this scenario, this work proposes a testing approach
based on functional tests. Each software module (application service) is seen as a black-box, and an
alternative way to design tests case is presented. The concept of generalized functional tests is analyzed
under the perspective of tests case more informative and more able to ensure the quality of an application
service. The particular focus on the reuse of test data instances highlights the potential of the suggested
model.

Keywords: functional tests, application services, software development

1Email: nascimenthiago@gmail.com

1

Revista de Informática Aplicada, Volume 13, Número 2, 2017

C

M

Y

CM

MY

CY

CMY

K

A9R59B.pdf 1 22/02/2018 21:50:51

1 Introduction

The complexity of applications is growing
considerably in corporate environments, while
designing and developing systems need to sat-
isfy hundreds or thousands of separated re-
quirements. In fact, it is not uncommon
that modern applications may be characterized
by attributes like persistent data manipulation,
concurrent access data, integration with other
legacy systems, complex business logic, and
so on. Interactions with these kinds of applica-
tions tend to be complex, since they typically
involve transactions across multiple resources
and the coordination of several responses to an
action. Encoding the logic of these interactions
demands an appropriate code architecture in
order to avoid duplication of business logic,
and allow efficient maintenance apart from re-
ducing the complexity of systems (STÄBER,
2008).

In this context, the Service Layer Pattern
has been proposed as a right way to coordinate
complex interactions with the core of mono-
lithic applications or with the service-based
systems. According to (FOWLER, 2002), a
Service Layer defines an application boundary
and its respective set of available operations
from the perspective of interfacing client lay-
ers. Thereby a Service Layer never exposes
details of the internal processes or the business
entities (TEAM, 2009).

A common Service Layer building approach
for monolithic applications involves providing
as a set of thicker classes that implement the
application logic directly (FOWLER, 2002).
Each such class constitutes an application ser-
vice which provides a central location to the
encapsulated business logic (ALUR; MALKS;
CRUPI, 2013). Figure 1 presents how both
patterns Service Layer and Application Ser-
vice are interrelated in a multi-tier application
architecture.

From the software quality perspective, ap-
plication services must be tested as any system
component. This paper describes a black-box
testing architecture for applications services.
Although the focus is on monolithic applica-

tions, it is not restricted to it. The remaining
of this paper is organized as follow. In Section
2, the classical functional testing approach is
described. Section 3 is dedicated to detail the
concept of generalized functional tests. In Sec-
tion 4, an architecture model is presented as a
way of implementing the concept described in
the previous section. Conclusions and direc-
tions for future work are included in the last
section.

2 Classical Functional Tests

According to (BARBOSA et al., 2000), a crux
of testing activity is the design and the qual-
ity evaluation of a particular set of test cases T
used for testing a specific product P indepen-
dently of testing step. Based on this, the input
data used by each test case means a critical fac-
tor for ensuring the software quality. However,
it is impracticable to use all input data domain
in order to evaluate functional and operational
features of a product under testing. Thereby, a
software testing architecture should be flexible
enough to explore input data appropriately. At
the same time, it must be rigid enough to pro-
vide a roadmap toward successful construction
of software.

One important testing strategy is black-box,
data-driven, or input/output driven testing. The
use of this method implies view the program
as a black box. The goal is to be completely
unconcerned about the internal behavior and
structure of the program. Instead, concentrate
on finding circumstances in which the pro-
gram does not behave according to its speci-
fication (MYERS; SANDLER, 2004).

Functional testings are a kind of black-box
testing in which the selection of test cases
is based on the requirement or design spec-
ification of the software entity under testing.
Examples of expected results sometimes are
called test oracles. They include requirement
and design specifications, hand calculated val-
ues, and simulated values. So, functional test-
ing emphasizes on the external behavior of the
software entity (LUO, 2001). In this paper,
applications services are seen as entities that

2

Revista de Informática Aplicada, Volume 13, Número 2, 2017

C

M

Y

CM

MY

CY

CMY

K

A9R59D.pdf 1 22/02/2018 21:51:33

Figure 1: A Multi-Tier Application Architecture

must be submitted to functional testings.
In this way, a service layer S of a prod-

uct P may be defined as composed by a fi-
nite number of applications services αi, i.e.,
S = (α1, α2, · · · , αn). Following this nota-
tion, a set of tests T for S may be described
as T = (τ1, τ2, · · · , τn), where each τi ∈ T
corresponds to a chain of test cases for an ap-
plication service αi ∈ S. Since any application
service works in response to some input or set
of inputs, let I = (δ1, δ2, · · · δm) be the type
set of inputs data to be used by a whole service
layer S. Each subset (δj, · · · , δk) ⊂ I corre-
sponds to a data type logical grouping which is
related to the set of parameters required by an
application service.

Based on this model, an application service
αi ∈ S can be better defined as

αi : δi 7→ εi

where αi processes input data of the type
δi and generates output data of the type
εi. Instances of δi and εi are denoted
by δi = (δ1i , δ

2
i , · · · , δ

j
i , · · ·) and εi =

(ε1i , ε
2
i , · · · , ε

j
i , · · ·) respectively. Therefore, a

chain τi of tests case for αi can be defined as
τi = (τ 1i , τ

2
i , · · · , τ ki). So, given any data in-

stance δmi of the type δi, a test case τ ji ∈ τi is
denoted as follow

τ ji (δmi , αi) : αi(δ
m
i) 7→ εmi .

In this way, a test case τ ji ∈ τi checks if the
logic implemented by the application service

αi processes the input data δmi into the output
data εmi according to the specified.

This model is a way to describe the tra-
ditional functional testings approach for any
kind of applications services. Nevertheless, it
presents a limitation related to the input data
employed to test each application service. Al-
though the αi ∈ S invocation involves sup-
plying data instances of the type δi, it is not
rare that other auxiliary kind of data should be
made available so that the αi application ser-
vice can work correctly.

By way of example, let δ′i = (δ1i , δ
2
i) be a

data instance of the type δi to test the αi ap-
plication service by means of a set of tests τi.
Suppose it is necessary to make available data
instances of other δj and δk complementary
data types in order to (i) make αi able to run,
and (ii) use τi to check the generated output. In
this way, if δ′i is made available, it implies that
instances of δj and δk must also be made avail-
able in order to ensure the correct and com-
plete execution of αi. Let δ′j = (δxj , δ

v
j) and

δ′k = (δyk , δ
w
k) be instances of δj and δk respec-

tively. Therefore, a complete set of data in-
stance necessary to the correct and complete
tests execution should be as follow

((δ1i , δ
x
j , δ

y
k), (δ2i , δ

v
j , δ

w
k)).

It is important to notice that the successful exe-
cution of any test case from τi implies that only
δ′i data input be used in order to evaluated αi.

3

Revista de Informática Aplicada, Volume 13, Número 2, 2017

C

M

Y

CM

MY

CY

CMY

K

A9R59F.pdf 1 22/02/2018 21:52:21

So, data instances of other data types which
have been made available, that is δ′j and δ′k, are
not used for any validation or verification by
tests from τi.

In this scenario, let τj ∈ T be a set of tests
built for another application service αj ∈ S.
The input data supposed to be used by it com-
prise two data types: (δj, δk). In this case, the
application service may be described as follow

αj : (δj, δk) 7→ εj ,

where instances of (δj, δk) are denoted by
((δ1j , δ

1
k), (δ2j , δ

2
k), · · ·). Another assumption is

that the correct execution of αj demands that
auxiliary data instances of another data type
δi must be made available, that is, δxi and δyi .
Based on all those assumptions, the execution
of the set of tests τi and τj requires that input
data instances must be made available accord-
ing to the configuration described by Figure 2.

τi

 δ1i δxj δyk

δ2i δvj δwk

δxi δ1j δ1k

δyi δ2j δ2k

 τj

Figure 2: Input data arrangement for τi and τj
set of test cases

At this configuration, the (δxj , δ
y
k) and

(δvj , δ
w
k) data chunk will not be used by τj set of

test cases as well as δxi and δyi will not be pro-
cessed by τi. In other words, test cases for the
αi application service will only use the dataset
defined to it, that is, instances of δi. Any other
data of the type δi that had been made avail-
able will not be used by tests cases from τi.
Actually, when some data input are defined as
part of a respective set of test cases, this consti-
tutes a restriction over data instances that can
be used by each test case. Moreover, as in-
put data are usually coupled with the respec-
tive test case code, the code coverage reached
by the tests is likewise compromised.

Those limitations have motivated the arising
of alternative functional testings approaches.

In fact, the functional testing model presented
in this work offers a way to improve the use of
input data instances by test cases.

3 Generalizing Functional Tests

The proposed functional testing model aims
the better usage of input data sample prepared
for each test case. Two principles guide this
model:

1. To take away the input data definitions
from test case code.

2. To allow each test case to access every
data instance made available to any appli-
cation service under testing.

Four main components were defined accord-
ing to those principles:

• Initial State: It is used to define input
data instances for the test cases.

• Execution Context: It holds on all pre-
conditions necessary to the correct and
complete application service execution.

• Test Scenario: It is responsible to define
all pre-conditions required by each busi-
ness rule of an application service under
testing. All pre-conditions are loaded into
the Execution Context, including the data
instances defined in the Initial State.

• Test Repository: It is a set of generalized
test cases which uses all data made avail-
able for each test scenario.

Figure 3 presents a sketch model comprising
those components. The integration and use of
them are centralized in a testing engine which
coordinates each test scenario execution. Since
the initial state holds on any type of input, no
data is defined in test cases. If some additional
precondition is demanded by test cases from
Test Repository, each test scenario is respon-
sible to provide it. Otherwise, test scenarios
should just make available its specific initial
state to test repository. The application service
invocation could be done by both test engine

4

Revista de Informática Aplicada, Volume 13, Número 2, 2017

C

M

Y

CM

MY

CY

CMY

K

A9R5A1.pdf 1 22/02/2018 21:53:21

Figure 3: Proposed Components Model

and test repository. This invocation depends
on each application service particularity. How-
ever, any output from the application service
must be returned to test repository since it con-
tains all generalized test cases.

The concept of test scenario applied in this
architecture is slightly different from the tra-
ditional definition. According to (KANER,
2003a), a test scenario is a test based on a hy-
pothetical story, used to help a person think
through a complex problem or system. The
story involves a complex use of the program
or a complex environment or a complex set of
data. This aspect there exists in the proposed
architecture since the underlying idea of the
scenarios of tests is to check an application ser-
vice - the complex system - through a complex
set of data.

Moreover, a test scenario may be seen as
a black box in which test cases are designed
to execute scenarios of use cases (BOARD,
2012). So, test scenarios are defined for an in-
dividual project or product at different stages
such as unit testing, integration testing, in-
terface testing and system testing (LIMAYE,
2009). An application service under testing is
the individual product for which test scenarios
are defined. However, the proposed model is
focused on design test cases specifically in the
test repository. Ideally, test scenarios should
contain only dataset (Initial States) and no one

test case. So, a test scenario Ci for an applica-
tion service αi can be defined as follow

Ci : (∆i,Γi, τi) 7→ Θi,

where ∆i is the initial state (row input data in-
stances) to test an application service αi, Γi

comprises any other pre-conditions required
by the business rules implemented by αi, τi is
related to the set of test cases built to evaluate
αi, and Θi is the execution context in which
all pre-conditions necessary to the correct and
complete execution of the tests are loaded.

Another new concept arises from the pro-
posed model. It has mentioned that Test
Repository holds Generalized Functional Tests
(GFT). They can be understood as agnostics
tests regarding data inputs. In fact, each gen-
eralized test does not know which instance of
data it will use in order to evaluate an appli-
cation service. Instead, it knows just the data
type to use in the test activity. In this way, a
generalized test consumes all data chunk that
corresponds to the type understandable by it.
All data chunk is made available by each ini-
tial state from each test scenario.

Furthermore, it is important to notice where
test cases are defined. In this model, there are
two places where to put each one of them: in
a specific test scenario or in the test repository.
Defining a test case in a specific test scenario
corresponds to the classical approach. On the

5

Revista de Informática Aplicada, Volume 13, Número 2, 2017

C

M

Y

CM

MY

CY

CMY

K

A9R5A3.pdf 1 22/02/2018 21:53:59

other hand, to put a test case in the test repos-
itory means it was promoted to a generalized
test. An ideal situation would be to promote
all test cases to generalized tests.

Basing on those components and defini-
tions, let Ci = {C1

i , C
2
i , . . . , C

n
i } a set of test

scenarios implemented for an application ser-
vice αi. Using the proposed architecture, for
each test scenario Cj

i ∈ Ci, the following steps
are executed:

1. The data instances defined in the initial
context are loaded into the execution con-
text by the test scenario Cj

i . Hence, the
input data become available to test repos-
itory.

2. Any other required preconditions are set
up by Cj

i and loaded into the execution
context.

3. Each test case τ ji ∈ τi from test repository
is executed.

This flow makes possible a new test scenario
Cn+1

i may be included in Ci. In this case,
all instance of data made available for it, will
be used by all generalized test cases from test
repository. Indeed, if Cn+1

i contents some test
case that may be promoted to the test reposi-
tory, they will reciprocally use the data sample
made available for all others test scenarios.

Following these definitions, given a set of
data δ′i ⊂ δi and a chain of tests case τi, a test
case τ ji ∈ τi for an application service αi may
be described as

τ ji (δji , αi) : αi(δ
j
i) 7→ εji , δ

j
i ∈ δ′i.

In this model, each test case can only use
data from δ′i set. In fact, the whole set of data
used for testing αi is defined as part of a test
case. Moreover, the execution of each spe-
cific test case remains restricted to use only
specifics sample of data δji ∈ δ′i. Actually, no
other data instances of the same δji type will
be used by the test case because it was not de-
fined as part of the respective test case. Based
on this limitation, a test case can be converted
into a generalized test case by taking away

from it any parameter which limits its execu-
tion scope. A test case redesigned according
to this principle can be defined as follow

τ ji (δji , αi) : αi(δ
j
i) 7→ εji , ∀δ

j
i ∈ δi.

In this rewritten test case, it is important to
notice that input parameters of τ ji are no more
restricted to a specific subset δ′i ⊂ δi. Actually,
this redesigned test makes possible any δji be-
longing to a data source (δ1, δ2, · · · δi, · · · , δm)
can be used as input data. Thereafter, the τ ji
test case will use any available instance of δi
to testing αi application service.

4 Implementing GFT

As aforementioned, the new proposed model
for functional testings is based on the general-
ized test cases concept. This kind of test case
is not restricted to a specific set of input data.
Actually, a generalized test case knows only
the data type used by the application service
submitted to test. It does not know any partic-
ular data instance.

Although generalized test cases incorporate
this new design issue, they should remain
incorporating the requirements for good test
cases as suggested by (KANER, 2003b). In
this way, testers or programmer developers
must continue narrowing their focus to build
generalized test cases more reliable, more use-
ful for troubleshooting, and more informative.
However, given that a functional test may be
promoted to a generalized test case, it is neces-
sary to enhance it. Such enhancement involves
the implementation of two additional aspects:

1. Plain Logic: The idea behind the Plain
Logic concept is the re-implementation of
the business logic under testing. In fact,
if an application service under testing im-
plements a business rule Ri, a general-
ized test case for it must contain a R̃i as
a re-implementation of Ri. However, the
main difference between Ri and R̃i is the
way of building it. In the application ser-
vice, Ri should be implemented accord-
ing to an elaborated architecture, which

6

Revista de Informática Aplicada, Volume 13, Número 2, 2017

C

M

Y

CM

MY

CY

CMY

K

A9R5A5.pdf 1 22/02/2018 21:54:40

probably involves some design patterns,
software frameworks, and any other good
techniques to support the development ac-
tivity. Nevertheless, the R̃i implementa-
tion in a generalized test case must not use
any additional resource (software or tech-
nique). Actually, R̃i is considered as plain
logic if its respective code corresponds to
a simply way to implement it, that is, it is
easy to evaluate. In this way, although the
generalized test case logic is more com-
plex than a classical test case (almost no
logic), the evaluation of it is simplified by
the way of to implements the plain logic
as an enhancement feature.

2. Expected Calculated Values: According
to (SAINI; RAI, 2013), an expected result
is a final outcome which is defined based
on requirements specifications for the test
execution. In fact, in traditional test cases,
expected values are explicitly defined in
the code and compared against the result
received after applying the test data to
software. However, for the generalized
test cases, this concept is extended to ex-
pected calculated values. Instead of set-
ting the expected value, it is calculated by
plain logic. In this way, a test case asser-
tion involves a comparison between two
calculated values: one calculated by the
application service (execution invoked by
the test case) and another one calculated
by the test case itself (via plain logic).

Based on these enhancement features, the
generic code structure of a generalized test
case differs significantly from the traditional
test case. For instance, the Algorithm 1
presents a common way to implement test
cases. It is important to highlights some in-
trinsic characteristics:

• Test data instances defined in test case
code. (Line 1)

• Expected values set up in the test case
code. They are used to compare against
the outcome from the software execution
- the αi application service. (Line 2)

• There is no logic implemented in test case
code.

Algorithm 1 Traditional Test Case
Input: Application Service αi

Output: Success or Fail
1: Build a testDataT as a data instance of

Type T;
2: Build a expectedValueT as an expected

value of T Type;
3: actualResultT← αi(testDataT);
4: if Assertion comparing (expectedValueT,

actualResultT) is OK then
5: Return SUCCESS;
6: else
7: Return FAIL;
8: end if

On the other hand, test case promotion to a
generalized functional testing implies several
modifications in the code structure as may be
seen in the Algorithm 2.

Algorithm 2 Generalized Test Case
Input: Application Service αi, Data Source δi
Output: Success or Fail

1: Get a testDataSetT composed by all data
instance of Type T from δi;

2: for each testDataT ∈ testDataSetT do
3: Calculate expectedValueT via plain

logic;
4: actualResultT← αi(testDataT);
5: if Assertion comparing (expectedVal-

ueT, actualResultT) is NOT OK then
6: Return FAIL;
7: end if
8: end for
9: Return SUCCESS;

Essentially, the differences between the two
approaches are related to the two aforemen-
tioned improvements:

• Test data instances no more are built in
test case code. They are obtained from a
provided data source. It is important to
notice that any data instance of the spe-
cific type (T) will be used as input data
test (line 1).

7

Revista de Informática Aplicada, Volume 13, Número 2, 2017

C

M

Y

CM

MY

CY

CMY

K

A9R5A7.pdf 1 22/02/2018 21:55:16

Figure 4: Generalized Functional Testings Architecture

• The expected values used in assertion
comparison are not defined. Instead of
this, they are calculated via a plain logic
implementation (line 3).

• Instead of just one assertion comparison,
there are several comparisons according
to the number of data instances obtained
from the data source (line 5).

Naturally, it is common to have application
services that implement business rules which
are applied to the entire set of data instances
rather than to instance by instance as showed
by Algorithm 2. An example involves calcu-
lating some measurement based on an analysis
of all data instances made available. In this
case, the Algorithm 2 must be slightly modi-
fied. The assertion comparison (Line 5) should
be moved to outside the loop. Additionally,
the actualResult should accumulate the mea-
surement of interest analyzing each test data
instance (Line 4). The application service will
be invoked just once and the generated output
should be compared against the calculated ex-
pected value (actualResult) outside the loop.

Based on these test improvements, there are
several ways to design an architecture which
supports generalized test cases. Figure 4 de-
scribes a suggestion of class diagram for this

functional testing approach. It constitutes an
implementation of the model presented by Fig-
ure 3.

It is important to identify how main com-
ponents of the model are represented on this
architecture:

• Initial State: Each one is associated with
the appropriate Test Scenario. In practice,
an initial state can be a SQL file, a class
method or any other structure which must
contain all test data definitions.

• Test Engine and Execution Context:
The TestSuite class is the connector with
the Test Engine. It is responsible to exe-
cute the whole architecture. Another re-
sponsibility of it is to ensure the prereq-
uisites for the correct execution of all test
cases (Execution Context).

• Test Scenarios: In the figure, there
are two Test Scenarios - TestScenar-
ioAppServiceA and TestScenarioAppSer-
viceB. Each one is responsible to establish
the appropriated conditions for its specific
set of test cases. Moreover, any no gener-
alized test case should be defined in the
respective Test Scenario.

8

Revista de Informática Aplicada, Volume 13, Número 2, 2017

C

M

Y

CM

MY

CY

CMY

K

A9R5A9.pdf 1 22/02/2018 21:55:54

• Test Repository: It is implemented by
the TestRespository class. All the gener-
alized test cases are defined in this class.

Another important feature of this architec-
ture is related to the data source of test in-
stances. As there is no data defined in test
cases, data instances are provided by concrete
factories. Each test scenario uses a specific
factory in order to make available data in-
stances to Test Repository. A strategy used
to coordinate the construction of factories is
applying the Abstract Factory design pattern
which provides an interface for creating fam-
ilies of related or dependent objects without
specifying their concrete classes (FREEMAN
et al., 2004). There is no more of one instance
per concrete factory. This characterizes the use
of the Singleton design pattern.

4.1 A Concrete Example

Let R1 and R2 be business rules implemented
by an application service Ω such that

R1: receives the Employer Identification
Number (CNPJ, in its Portuguese acronym),
with no validation digit, and it returns the same
number added to the respective calculated val-
idation digit.

R2: receives as parameters the amount of
admitted and layoff employees from a com-
pany, and it returns the respective employee
balance (the difference between admitted ones
and layoff ones). A negative balance implies
that a zero value is returned.

The application service Ω should extract
data from a source database, and it must store
the output data into another target database.
Suppose those databases are described by two
very simplified schemes as presented by Ta-
bles 1 and 2.

Table 1: Source Database

cnpj_no_vd admitted layoff

For the R1 and R2 rules of this example, the
set ∂ = {α, β} is such that

α = {cnpj_no_vd}

Table 2: Target Database

cnpj_vd employee_balance

and

β = {num_admitted, num_layoff}

Let T1 and T2 be the set of test cases for R1

and R2 respectively. It is important to point
out that, according to the approach presented
in this work, R1 and R2 are faced as system
functionalities. Thereby T1 and T2 constitute
functional tests which use the Ω application
service as a black-box.

Assuming null values are not permitted for
any attribute of the scheme, so

α′ = {863832180001, 364657490001} and
β′ = {(10, 5), (10, 10), (5, 10)}.

As T1 and T2 must be executed, it is neces-
sary that instances of ∂ should be fully loaded.
Therefore, it will be loaded the following data
instances to α′ and to β′ respectively

∂11 = {863832180001, 2, 0};
∂21 = {364657490001, 0, 1};

∂12 = {407994500001, 10, 5};
∂22 = {125942160001, 10, 10};
∂32 = {573964610001, 5, 10}

The instances of ∂′ ⊂ ∂ must be stored as
described by Tables 3 and 4.

Table 3: Input Data to T1

cnpj_no_vd admitted layoff
863832180001 2 0
364657490001 0 1

Table 4: Input Data to T2

cnpj_no_vd admitted layoff
407994500001 10 5
125942160001 10 10
573964610001 5 10

The data highlighted in bold corresponds to
data that will be used by the respective tests.

9

Revista de Informática Aplicada, Volume 13, Número 2, 2017

C

M

Y

CM

MY

CY

CMY

K

A9R5AB.pdf 1 22/02/2018 21:56:40

Other data are only loaded as required by the
scheme. In this way, if T1 would can use the
input data loaded to T2, and vice versa, then
both tests will be favored by a higher input
data diversity. Hence, R1 and R2 would be
more widely tested and the Ω application ser-
vice quality would be even more improved.

Aiming to reach the aforementioned effect,
the tests must be projected in such a way that
any data loaded into ∂ can be used by any other
rule of R every time is possible. In the context
of this example and considering the diagram
presented in Figure 3, two scenarios should be
created for testing Ω. In this way, Scenario 1
must refer the Initial State in order to load the
source database. This initial state can be im-
plemented as a SQL file, and its content can be
described by queries as follow

INSERT INTO table_source_db
(cnpj_no_vd , admitted , layoff)
VALUES (863832180001, 2, 0);
INSERT INTO table_source_db
(cnpj_no_vd , admitted , layoff)
VALUES (364657490001, 0, 1);

As the aim is to generalize the tests and do
not to restrict them, each test case must be able
to read all CNPJ made available in the source
database, apply the respective business rule,
and verify if the output value is in the data set
loaded into the target database. In other words,
the test case T1 related to the rule R1 must im-
plement the following steps

1. Read all CNPJ from the source database.

2. For each read CNPJ:

(a) Invoke the validation digit calculus.

(b) Build the CNPJ added by the valida-
tion digit.

(c) Test if the expected CNPJ is in the
target database.

3. Test if the amount of CNPJ in the source
database corresponds to the amount of
CNPJ in the target database.

The test case is implemented as an exten-
sion of TestRepository class. Because of this,
the execution of any scenario will imply that
all test cases be executed for all data set in the
source database. It is important to point out
that this feature was made possible because no
specific CNPJ was used as parameter. In other
words, this test case was generalized.

In an analogous way, the test case T2 must
be implemented. As soon as the test building
be concluded, all CNPJ loaded to T2 will also
be used by T1. Then, the data instances used
to test R1 will be expanded. Inversely, the data
related to the amount of admitted and layoff
persons made available by T1 will also be used
by T2 in order to execute the tests to R2.

4.1.1 Implementation Details

The implementation of this concrete exam-
ple was made employing the Java program-
ming language, version 1.8.0_31. The com-
plete source code is available on a GitHub
repository (RODRIGUES, 2017). More-
over, as the JUnit platform became the de
facto standard framework for developing unit
tests in Java (MASSOL; HUSTED, 2003),
it was employed as Test Engine, and the
Test Suite was defined as a JUnit Runner2.
Relying on this platform, both T1 and T2
were constructed as two distinct Test Scenar-
ios, namely TestScenarioV alidationDigit
and TestScenarioEmployeeBalance, re-
spectively.

The databases were emulated through
two classes: SourceDatabase and
TargetDatabase. Because of this, the
Initial State associated to each Test Scenario
was built providing instances of ∂′ ⊂ ∂ by
means of Java primitive wrapper classes3

2According to (APPEL, 2015), the purpose of a JU-
nit Runner is to compose several test cases and/or other
suites into a single entity that is processable by JU-
nit. The composition is accomplished by means of the
@SuiteClasses annotation, which is used to specify a
list of test cases or nested suites.

3Each Java primitive data type has a class dedicated
to it. These are known as wrapper classes because they
"wrap" the primitive data type into an object of that
class.

10

Revista de Informática Aplicada, Volume 13, Número 2, 2017

C

M

Y

CM

MY

CY

CMY

K

A9R5AD.pdf 1 22/02/2018 21:57:32

rather than SQL files. So, the input data for
the Test Scenario T1 was made available by
the class InitialStateV alidationDigit as
follow

this.inputData =
new HashMap<String, List<Long>>();

this.inputData.put("863832180001",
Arrays.asList(2L, 0L));

this.inputData.put("364657490001",
Arrays.asList(0L, 1L));

Two test cases were generalized and incor-
porated to the Test Repository. The first one
checks if the balance calculated by the Ω ap-
plication service is correct. The second one
evaluates the validation digit generated by Ω.
In this way, the steps described in the previ-
ous section and which must be executed by T1
were implemented as follow
@Test
p u b l i c vo id t e s t C N P J V a l i d a t i o n D i g i t () {

/ / Read a l l CNPJ from t h e s o u r c e DB
Map< S t r i n g , L i s t <Long>> d a t a =

S o u r c e D a t a b a s e . g e t I n s t a n c e () .
ge tAl lCNPJData () ;

/ / For each read CNPJ
f o r (S t r i n g sCnpj : d a t a . k eyS e t ()) {

CNPJ c n p j = CNPJFactory .
g e t I n s t a n c e () .
b u i l d (sCnpj , d a t a . g e t (sCnpj)) ;

/ / V a l i d a t i o n d i g i t c a l c u l u s
t h i s . e m p l o y e r S e r v i c e .

g e n e r a t e B a l a n c e (c n p j) ;

/ / P l a i n Log ic o f V a l i d a t i o n D i g i t
S t r i n g expectedCNPJ =

a d d C N P J V a l i d a t i o n D i g i t (
c n p j . getValueNoDV ()) ;

/ / T e s t i f t h e e x p e c t e d CNPJ i s
/ / i n t h e t a r g e t d a t a b a s e
a s s e r t T r u e (T a r g e t D a t a b a s e .

e x i s t s C N P J o n B a l a n c e T a b l e (
expectedCNPJ)) ;

}

/ / T e s t t h e amount o f CNPJ i n t h e
/ / s o u r c e / t a r g e t d a t a b a s e s

a s s e r t E q u a l s (d a t a . s i z e () ,
T a r g e t D a t a b a s e .
s e l e c t A l l C N P J () . s i z e ()) ;

}

4.2 A Real Case Report

According to the Ministry of Labor (MTE,
in its Portuguese acronym) (MTE, 2017), the
General Record of Employed and Unemployed
Persons (CAGED, in its Portuguese acronym)
constitutes a permanent record of employed
and unemployed persons supervised by Brazil-
ian worker laws. This general record is used as
a resource for the preparation of studies, re-
searches, projects, and programs related to the
job market and government decisions. Every
Brazilian company must send CAGED files to
the authorities pointing out each new admis-
sion or layoff. All these files are received, pro-
cessed according to a large number of business
rules, and the output is stored in a database.
The aim is to consolidate the processed infor-
mation in order to feed a strategic Data Ware-
house.

The CAGED files processing cycle consti-
tutes a project comprising the analysis of about
300,000 files per month. This workload gen-
erates a data volume of approximately 2 gi-
gabytes. The amount and the complexity of
the business rules involved in this process de-
manded the development of a specific software
solution. Since a very tailored architecture for
tests was necessary, the model presented in this
work was adopted.

At the end of the software development, the
effort dedicated to the tests activity resulted in:

• 51 implemented test scenarios

• 1,196 generalized functional tests

This is the test infrastructure which supports
the quality of the CAGED files processing for
all Brazilian companies.

5 Conclusions and Future Work

The presented model proposes an alternative
approach for testing projects of applications
services. Its essential characteristic is to im-
prove the quality of the test activity. In this
way, its adoption may lead to relevant bene-
fits like Data Completeness and Code Cover-
age. The data completeness comes from the

11

Revista de Informática Aplicada, Volume 13, Número 2, 2017

C

M

Y

CM

MY

CY

CMY

K

A9R5AF.pdf 1 22/02/2018 21:58:11

data instances used by generalized test cases.
Actually, every generalized test case uses the
whole dataset made available by a provided
data source. Moreover, as each data instance
may be used by any generalized test case, there
is a wider coverage of the code under testing.
Actually, some unexpected behaviors can be
detected through the use of data instances not
initially prepared for a specific test case. Then,
there is a high data-reuse which in turn pro-
motes a better code coverage.

Another important benefit from this model
is related to the improvement of test cases. As
expected values are calculated rather than de-
fined, it is necessary to implement some busi-
ness logic in the test case. However, as busi-
ness rules should be re-implemented as plain
logic, they are easier to evaluate and hence, the
test case becomes more informative. Further-
more, this simpler logic implementation facil-
itates the test code checking. As a result, there
is a better quality assurance.

Naturally, there are other commons advan-
tages of using this model. The test automa-
tion is simplified since the model is focused on
functional testings and an application service
can be tested as a black-box. Another benefit
is the regression obtained as a straightforward
result from the generic structure of test cases.
All of these features mean a relevant support
to several software (application service) trou-
bleshooting tasks.

As an additional aspect, the model presented
by this work aims to grant to a testing project
an iterative and incremental design approach.
In fact, as each application service under test-
ing is sliced in test scenarios, each slice can be
seen as an isolated testable piece. So, as soon
as a new feature be incorporated into the ap-
plication service under testing, a new test sce-
nario (new slice) may be designed for it and
its generalized test case can be added to Test
Repository. In the same way, when there is a
new application service in the Service Layer,
all same structures may be incrementally gen-
erated in a new testing iteration.

Finally, it is relevant to mention that this
paper proposes an architecture specification

for the generalized functional testings model.
However, its adoption as design for a testing
project implies that the whole structure pre-
sented in Figure 4 must be implemented and
customized for the project reality. Therefore,
it is a future work to build the proposed test-
ing architecture as a framework which may be
just coupled into a project. This will facilitate
the use of the presented approach and will pre-
serve the focus on testing build activity.

References

ALUR, D.; MALKS, D.; CRUPI, J. Core J2EE
Patterns: Best Practices and Design Strate-
gies. 2nd. ed. Upper Saddle River, NJ, USA:
Prentice Hall Press, 2013. ISBN 0133807460,
9780133807462.

APPEL, F. Testing with Junit. [S.l.]: Packt
Publishing, 2015. ISBN 1782166602,
9781782166603.

BARBOSA, E. F. et al. Introdução ao Teste de
Software. João Pessoa, PB: [s.n.], 2000. 330–
378 p. Minicurso apresentado no XIV Sim-
pósio Brasileiro de Engenharia de Software
(SBES 2000).

BOARD, I. S. T. Q. Standard glossary of terms
used in Software Testing. 2012.

FOWLER, M. Patterns of Enterprise Ap-
plication Architecture. Boston, MA, USA:
Addison-Wesley Longman Publishing Co.,
Inc., 2002. 133-137 p. ISBN 0321127420.

FREEMAN, E. et al. Head First Design Pat-
terns. [S.l.]: O’ Reilly & Associates, Inc.,
2004. ISBN 0596007124.

KANER, C. An Introduction to Scenario Test-
ing. 150 W. University Blvd. Melbourne, FL
32901, USA, 2003.

KANER, C. What is a good test case? In: Soft-
ware Testing Analysid & Review Conference -
STAR East. Orlando, FL, USA: [s.n.], 2003.

LIMAYE, M. G. Software Testing. [S.l.]: Tata
McGraw-Hill Education, 2009. ISBN 978-0-
07-013990-9.

12

Revista de Informática Aplicada, Volume 13, Número 2, 2017

C

M

Y

CM

MY

CY

CMY

K

A9R5B1.pdf 1 22/02/2018 21:58:42

LUO, L. Software Testing Techniques Technol-
ogy Maturation and Research Strategy. Pitts-
burgh, PA 15232, USA, 2001.

MASSOL, V.; HUSTED, T. JUnit in Action.
Greenwich, CT, USA: Manning Publications
Co., 2003. ISBN 1930110995.

MTE. Cadastro Geral de Empregados e
Desempregados [General Record of Em-
ployed and Unemployed Persons]. 2017.
<http://trabalho.gov.br/trabalhador-caged>,
Accessed: 21-09-2017.

MYERS, G. J.; SANDLER, C. The Art of Soft-
ware Testing. [S.l.]: John Wiley & Sons, 2004.
ISBN 0471469122.

RODRIGUES, T. N. tnas/gft-ria-sample: gft-
ria-2017. 2017. Disponível em: <https://doi.
org/10.5281/zenodo.1095136>.

SAINI, G.; RAI, K. Software testing tech-
niques for test cases generation. International
Journal of Advanced Research in Computer
Science and Software Engineering, v. 3, n. 9,
p. 261–265, September 2013. Full text avail-
able.

STÄBER, F. Service layer components for
decentralized applications. 1-182 p. Tese
(Doutorado) — Clausthal University of Tech-
nology, 2008. Http://d-nb.info/992573637.
Disponível em: <http://www.gbv.de/dms/
clausthal/E_DISS/2009/db109198.pdf>.

TEAM, M. P. . P. Microsoft Application Ar-
chitecture Guide (Patterns & Practices). Mi-
crosoft Press, 2009. ISBN 9780735627109.
Disponível em: <http://www.amazon.com/gp/
product/073562710X>.

13

http://trabalho.gov.br/trabalhador-caged
https://doi.org/10.5281/zenodo.1095136
https://doi.org/10.5281/zenodo.1095136
http://www.gbv.de/dms/clausthal/E_DISS/2009/db109198.pdf
http://www.gbv.de/dms/clausthal/E_DISS/2009/db109198.pdf
http://www.amazon.com/gp/product/073562710X
http://www.amazon.com/gp/product/073562710X

	Introduction
	Classical Functional Tests
	Generalizing Functional Tests
	Implementing GFT
	A Concrete Example
	Implementation Details

	A Real Case Report

	Conclusions and Future Work
	References

