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(SCHWEFEL; HAMMEL; BÄCK, 1997) (GORDON;
WHTLEY, 1996). Among all the evolution of
computational techniques, genetic algorithms
can be considered the most generic of them,
where the target problem is resolved through
evolution and selection according to the Ap
test options available (FREGNI, 1997). The
solutions are represented by fix-length strings
(sequence of characters or binary notation
system) and are evaluated through the use of
genetic operators, named crossover and
mutation (BANZHAF; REEVES, 1999).

In genetic algorithms, the concepts of indi-
vidual, organism and chromosome are equi-
valent and correspond to possible solutions for
a specific problem. Therefore, a population in
genetic algorithms is composed of a chromo-
some set, which is represented by a sequence
of binary strings (bits). Each bit set as well as
its position (locus) in the chromosome sequen-
ce defines a characteristic of the organism
identified as gene. The set of genes in a living
thing will define its genotype (chromosome
load). The values each gene can have is called

Abstract: There are a great number of high complexity of real systems where the application of
advanced computational techniques is necessary in order to obtain good results within the available
period of time. The complexity of such systems refers not only to the difficulty to identify all its
constituent parts but also due to excessive computational efforts needed to reach a good response for
them. This work presents a proposal for implementing the Artificial Intelligence technique called Genetic
Algorithm, aiming to resolve a high complexity of real system, which is associated with the unbalance
between the capacity and demand in the air transportation system.

Keywords: genetic algorithms, artificial intelligence, high complexity problems, unbalance between
capacity and demand, air transportation system.

1  INTRODUCTION

This study presents an application of the
artificial intelligence technique, called genetic
algorithm, in the resolution of a problem con-
cerning the actual optimization of a high com-
plex system focusing the aeronautical infra-
structure demand. Section 2 shows a general
view of Genetic Algorithms, a field of Artifici-
al Intelligence. Section 3 explains the problem
to be resolved. Section 4 presents details of
the genetic algorithm and its appropriate par-
ticularities for modeling and resolving pro-
blems. Section 5 details the simulation. Finally,
section 6 presents the main conclusions and
comments about the results obtained when
applied the queen-bee genetic algorithm for
the resolution of the presented problem.

2  GENETIC ALGORITHMS

The concept of Genetic Algorithms was in-
troduced (HOLLAND, 1961) and proposed as a
general model for the great majority of appli-
cations related to optimization techniques
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allele. The fitness function leading the evolu-
tion process is the exteriorization of the geno-
type, also called the phenotype.

The roulette wheel selection method, also
called proportional selection (fitness propor-
tional), is the oldest selection method in use
and was proposed by John Holland (FREGNI,
1997). In this method, the reproduction selec-
tion probability is proportional to the fitness
value of each chromosome.

The concept is to imagine a roulette wheel
where the size of each slice or sector is pro-
portional to the fitness of each population
chromosome. Therefore, each chromosome is
mapped in a roulette slice. The larger the slice
a chromosome occupies, the higher the proba-
bility of this chromosome to be selected. Fi-
gure 1 shows the roulette selection method.

In Figure 1, Psi is the selection probability of
chromosome i associated to the sector si of the
roulette. The selection of each reproductive
chromosome corresponds to the generation of a
random variable, va, between 0 and 1. The se-
lected chromosome i will be the one presenting
ni-1< va < ni where ni is the selection “accumulated
probability” to the chromosome i as a result of:

where n corresponds to the total chromosome
number of the population.

The main phases of the genetic algorithms
evolution process, from its initial population
up to its final population, are following presen-
ted as well as its relation with the crossover

Figure 1: Roulette Selection Method

and mutation operators. The final population
is reached when there is evolution stagnation,
the stop criterion for genetic algorithms.

a) Generation of the Initial Population

The initial population of chromosomes is
randomly generated. This population is kept
with constant size during all the evolution pro-
cess of the genetic algorithm. Additionally, each
chromosome fitness function is evaluated.

b) Chromosomes Selection Process

The process of roulette wheel selection cho-
oses and makes a copy of the chromosomes
that may or may not participate of the repro-
ductive process, according to another given
factor called reproduction ratio (tr).

Toward that, a random reproduction varia-
ble (vr) is used. If the reproduction ratio is
equal or higher than the random reproduction
variable, the copied chromosome is selected
for the reproduction process. In this case, this
chromosome copy is transferred for a queue
structure, called parents queue. Otherwise, the
copied chromosome is discarded.

This is a FIFO-kind queue (First in, First
out). It is an important characteristic since all
chromosomes within this structure are already
in the right sequence to form pairs for applying
the crossover operator.

When two sequentially selected chromoso-
mes have the same phenotype (same fitness
value) one of them is discarded. This must
occur since the reproduction between identical
chromosomes (incest) does not bring any be-
nefits for the next generations. Avoiding incest
does not represent any loss for the evolution
process or for the population genetic diversity
(CRAIGHURST; MARTIN, 1995).

c) Reproduction Process
This process is applied to the parent chro-

mosomes according to the following steps:

c.1) Crossover
The chromosomes are separated in pairs

according to the same parent sequence they
were in the queue. The crossover operator is

ni =        Psk (equation 1) and         Psi  = 1 (equation 2)Σi

k=1 Σn

i=1
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applied to these pairs. The application point
(locus) of the crossover operator in these pairs
is randomly determined and is the same in
both paired chromosomes (GAMVROS, 2004).

c.2) Mutation

Mutation operator can occur after the crosso-
ver of the parent chromosomes. To define
whether applying or not the mutation operator,
a given factor called mutation ratio (tm) is used.
Added to that, a random mutation variable (vm)
is used. If the mutation ratio is equal or higher
than the mutation random variable, the mutation
operator will be applied to the offspring chro-
mosome generated by the crossover. The muta-
tion will be applied in a randomly selected site.
Otherwise, the mutation operator would not be
applied to the offspring chromosome that will
be directly transferred to a population called
intermediate. This intermediate population is
the initial population for the next generation,
resuming the evolution process.

d) Intermediate Population

The intermediate population is the next ge-
neration population in the evolution process.
This population is composed of three kinds of
chromosomes:

d.1) Survival Chromosomes

Out of the best chromosomes, α % is prior
selected and goes direct to the next generation
without being submitted to the reproduction
process. These chromosomes, together with
the chromosomes generated by the reproduc-
tion process, will compose the population of
the next generation. The survival chromoso-
mes are important to guarantee the evolution
of the population from generation to gene-
ration. It assures to the next generation the
fitness of the best chromosome to be at least
equal to that of the last generation. This way,
an involution process is avoided, that is, fitness
oscillation of the best chromosomes will not
be seen in the next generations.

d.2) Offspring Chromosomes by Crossover

These are the chromosomes generated only
by the crossover operator.

d.3) Offspring Chromosomes by Crossover
and Mutation

These are the chromosomes generated by
the crossover and mutation operators. Obser-
ve that the roulette wheel selection must be
conducted in a number of times, enough to
select the equivalent to (1 - α %) parent chromo-
somes in every generation. The population size
is constant from generation to generation in
what concerns the genetic algorithms.

An increasing order rank of all chromoso-
mes of the intermediate population is obtained
considering the fitness value of each chro-
mosome. This constitutes the population for
the next generation, when evolution process
is resumed.

e) Process Repetition

The genetic algorithm evolution occurs th-
rough repeating items from b to d, until the
stop criterion is reached. There are many kinds
of stop criteria to be adopted (FREGNI, 1997).
The stability criterion was adopted in this stu-
dy, considering there is n of the best non-mo-
dified organisms during m generation, where
n and m were given.

When using this kind of stop criterion, the
optimization process may reach a good, when
not an excellent level of optimization using less
computer operations if compared to other cri-
teria. In what concerns the stop criterion throu-
gh the number of generations, for instance,
the genetic algorithms evolve up to m genera-
tions, where m is given. It is not possible to
assure that the evolution process will find the
best solution up to m generations. On the
other hand, depending on the value of m, the
convergence of the best solution can be reached
much earlier than at m generations. Therefore,
the time between reaching the best solution
and m generations can be a waste. Figure 2 pre-
sents the evolution for genetic algorithm.

3  PROBLEM TO BE RESOLVED

The forecast demand concerning airline
companies is reached through flight schedu-
les, supplied by the airline companies. Based
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Figure 2: Evolution for Genetic Algorithm

on this forecast demand, a situation analysis
diagram is formed for each sector and airport
of the airspace infrastructure. Figure 3 presents
a diagram of the situation analysis for a sector
of São Paulo's terminal control area, in Brazil.
The data for this diagram were supplied by

the Brazilian Air Route Traffic Control - CGNA
('Centro de Gerenciamento de Navegação Aérea'),
located in São Jose dos Campos - SP, through
its management system called SAS - AuATFM
- FMP (Air Traffic Flow Management - Flow
Management Point).

Evolution Genetic Algorithms
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In its vertical axis, the diagram presents a
forecast occupation of the airspace sector (air-
space area in which the routes of aircrafts pass)
or of the airports in each moment. Additionally,
congestion, saturation and acceptable saturation
lines are also represented. A sector is considered
congested when its occupation presents from
80% to 100% compared to its declared nominal
capacity. It is considered saturated when the de-
mand exceeds its declared nominal capacity.

The declared nominal capacity of a sector
can be defined, in generic way, as the number
of aircrafts simultaneously managed by an air
traffic controller, guaranteeing pre-established
safety levels of air transportation systems.

The sector of Figure 3 is considered one of
the most critical sectors concerning the amount
of airspace traffic in São Paulo, when focusing
terminal control areas (confluence areas around
airports).

In the diagram, Figure 3, there are 3 defined
horizontal lines representing traffic conges-
tion levels (80% of the declared nominal capa-
city of the sector), saturation levels (100% of

Non-optimized demand sector XP01

Figure 3: Diagram showing the situation analysis of non-optimized traffic demand

the declared nominal capacity of the sector)
and acceptable saturation levels (120% of the
declared nominal capacity of the sector). Abo-
ve this acceptable saturation level, traffic is
considered supersaturated, meaning that safe-
ty levels for air transportation system can be
no longer guaranteed.

Notice that the non-optimized demand
chart shows the supersaturated area being
exceeded several times. The nominal maxi-
mum capacity of this sector is considered 8
aircrafts. We can observe, in certain moments,
up to 14 aircrafts in this sector, simultaneously.

The horizontal axis of the diagram brings
the time period in which the situation analysis
of a sector is conducted. Additional informa-
tion as, for instance, the kind of aircraft, time
of entering in the sector, identification of the
busy sector, among others, are presented to
offer more comprehensive details, allowing a
deeper analysis of the situation concerning the
airspace infrastructure.

It is quite clear that in several points of the
diagram, the demand exceeds congestion and
saturation lines. In actual terms, when conges-
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tion line is exceeded, even if authorized, occu-
pation may be used with restrictions, trying
to keep up with the safety level requirements.
In such events, the air traffic controller might
have to take actions in order to keep up with
acceptable safety levels. However, saturated
sectors should always be avoided otherwise sa-
fety levels are no longer guaranteed. Before
becoming saturated, actions should be taken
to balance traffic, reducing its demands to the
declared nominal capacity of the sector.

The diagram of the situation analysis is the
first approach of a situation that could happen
in a given period of time previously chosen.
In practical terms, this future situation could
be altered, depending on the evaluation of this
situation analysis diagram conducted by the
air traffic managing sectors. In this evaluation,
the air traffic-managing sector knows ahead
of time the places and schedules of probable
congestion, acceptable saturations and super-
saturations (demand higher than 120% of the
declared nominal capacity of the sector). The-
refore, future problems can be foreseen and
actions can be taken while scheduling flights.
Today, the worse problem is that such correc-
ting actions are taken considering only a spe-
cific area, without considering its effect on
other areas, that is, on the air traffic infra-
structure as a whole.

Actually, these specific area actions aim to
settle air traffic projected to a limited space,
corresponding, at the most, to some airports
and sectors presenting excessive traffic con-
gestion (TERMINAL AREA CONGESTION, 2005).

Then, this specific area intervention
approach is not ideal, solving only conges-
tion problem at that specific point, and in
some cases, could even cause worse pro-
blems for the general context of the air traf-
fic system.

4  MODEL OF GENERIC OPTIMIZATION

A model of generic air infrastructure is used
as premise for applying the optimization me-
thod through genetic algorithms, as shown in
Figure 4.

The sector is a portion of the airspace, con-
trolled by an air traffic controller. The objec-
tive of the air traffic controller is to guarantee
that, during the period of time that aircrafts
are in his controlled sector, flights will be safe.
Therefore, the aircrafts should be crossing that
controlled sector with the lowest collision risk
possible and safety-managing procedures
should be precisely informed to other air
traffic control sectors that may be involved.

The model of air traffic infrastructure uses
a concept of declared nominal capacity refer-
ring to the maximum number of aircrafts each
sector or airport can hold, keeping up with
acceptable safety levels. It is here assumed
that the declared nominal capacity presents a
fix value, determined and given in advance.

Aeronautical Scenario

Aeronautical scenario refers to a sequence
of routes of the air traffic infrastructure occu-
pied by aircrafts (flights) and evaluated during
a period of time. This way, the aeronautical
scenario points out the sequence of aircrafts
traffic within the sectors and airports compo-
sing several routes in use, at a certain period
of time. An example of aeronautical scenario
is presented below formed with a sequence of
aircrafts and their respective traffic routes,

flight/route of AE1 flight/route of AE2 flight/route of AE3

flight/route of AE4 flight/route of AEt

Considering AE1 to AEt the operational air-
crafts in the aeronautical scenario during the
period of time under evaluation.

4.2 Chromosome Description

The chromosome represents the set of all
aircraft AEi (demand) contained in all the
routes of the aeronautical scene. The chromo-
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Figure 4: Model of air traffic infrastructure

Considering: An: airport n; Rxy: route connecting airports x and y; St: sector t, and Ci: declared nominal capacity of the sector or
airport i.

4.3  Objective Function
The optimization process objective is to find

the best demand distribution, which mini-
mizes the Global Management Workload of
the aeronautical scene, during a period of time
in analysis. Thus, the Objective Function (OF),
or fitness, is defined in relation to the Global
Management Workload of the aeronautical sce-
ne, privileging the safety requirements.

some is a possible solution for the problem.
Figure 5 presents the chromosome used. Insi-
de of the chromosome each airport An, or sec-
tor Sn, corresponds to a set of bits referring
the occupation time of each aircraft AEi inside
of the sector Sn or airport An. The correspon-
ding value of this set of bits represents the real
time that each aircraft AEi will lead to cross
the sector Sn or will correspond to the delay in
the take-off in the airport An. The sets of bits
0000 and 1111 correspond respectively the mi-
nimum (tmin) and maximum (tmax) esteem ti-
mes that aircraft AEi spend to cross the sector
Sn or to occupy the airport An.

OF maximize
WL aeronautical scene
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Figure 5: Chromosome for the demand optimization model

The Global Management Workload (WL) of
the aeronautical scene is given by:

WL aeronautical scene
WL Sector n

The Management Workload of the sectors
is given by:

being t1 and t2 the time intervals of simulation
considered in the demand analysis. The Instan-
taneous Management Workload is given by:

WL instantaneous of the sector n

Being:
ESn = burst of the sector Sn, that is, demand
value (aircraft number) above 80% of the de-
clared nominal capacity of sector n.
TDEn = duration time of the ESn.

The bases B1 and B2 must respectively be
esteem for ESn and TDEn, breaking of the

WL Sector n
WL instantaneous of the sector n

principle that, when ESn will be equal to 120%
of the declared nominal capacity of the sector,
the TDEn duration will have to be equal to 12
minutes. (ICAO 9426, 2002).

5  SIMULATION OF AIRSPACE TRAFFIC
INFRASTRUCTURE

The airspace infrastructure simulated in the
case study is shown in figure 6, reached in
meetings and studies carried out with the Bra-
zilian Air Route Traffic Control - CGNA (‘Cen-
tro de Gerenciamento de Navegação Aérea’).

The airspace traffic infrastructure shown
here presents the following units:

• Terminal Control Areas: sectors WH01,
WR01, WJO1, SP01 (XP01 to XP05) and XQ01
corresponding respectively to Belo Horizon-
te, Brasília, Rio de Janeiro and São Paulo.

• Upper Airspace Traffic Area: sectors BS01,
BS02, BS03, BS04, BS07, BS08, BS09, BS11
and BS14. Sectors RJ05 and SP06 are also
in the upper airspace traffic area and are
used for non-stop flights between Rio de
Janeiro and São Paulo.

5.1 Computational Environment for
Simulation

The Laboratory for Advanced Scientific
Computer Studies - LCCA (‘Laboratório de Com-
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putação Científica Avançada’) of USP - University
of São Paulo is a virtual lab counting with HPC
- High Performance Computing available to all
researchers of the University of São Paulo.
Cluster ‘Alcateia’ is the computational environ-
ment used in this study, composed of a main
server, named ‘Alcateia’, and a stand-by cluster
(redundant) for increasing the environmental
availability. One of the servers of ‘Alcateia’
computational environment used in this study
has the following configuration:

- Number of CPUs: 4
- Speed of the CPUs: Intel XEON 2.4 GHz
- RAM: 2.5 GB
- Disk Memory: 72 GB

- SCSI (Small Computer System Interface) Disks

Program Environment:
- Operational System: Linux
- Program Language: C ANSI
- Compiler: cc

5.2  Session and Set of Tests
The genetic algorithms can be classified as

stochastic methods, in which the results of

Figure 6: Airspace traffic infrastructure under analysis

each simulation can be different. Due to these
difficulties, concepts of session and set (set of
tests) to define the cases of tests to be conduc-
ted in the case study were adopted:

• Set: a set of defined values (configu-
red) for the parameters of micro-
calibration of a certain genetic
algorithm. The set is defined by
the parameters: ratios of survi-
vors, reproduction, strong muta-
tion, normal mutation, strong
mutation points, strong mutation
probability, and population size.

• Session: fix number of simulations with
the objective of resolving the pro-
blem under evaluation.

Statistical methods are used considering the
mean value, the standard deviation and inter-
val value to differentiate the sets and determi-
ne the best among them.

For the queen-bee evolution for genetic algo-
rithm, 32 sets were defined as shown in Table 1
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Table 1: Sets for the genetic algorithm considering
queen-bee evolution

              Parameter        Variation

Population size 250, 500 and 1000

Ratio of Survivors 2%

Points of Strong mutation 5 and 10

Ratio of Reproduction 70% and 90%

Ratio of Normal Mutation 10% and 40%

Probability of Normal Mutation 60% and 80%

Probability of Strong Mutation 80% and 100%

The sets here presented were selected for po-
pulation sizes of 250, 500 and 1000 chromo-
somes.

6  CONCLUSION

The Figure 7 shows the situation diagram
of the best optimization found. It can be now
observed that the demand does not exceed
more the saturation level, as occurred pre-
viously in Figure 3, thus increasing conside-
rably the aeronautical safety levels.

Optimized demand sector XP01

Figure 7: Diagram for situation analysis of the best optimization founded

It was observed that, in general, the proces-
sing time approximately increases in li-
near form with the population size. This fact
can restrict it in some situations, mainly when
the time for reaching a solution is vital. We must
emphasize that the convergence time was in
average, 6, 12 and 24 h for the populations of
250, 500 and 1000 chromosomes respectively.

It could be observed that the mutation
operator presents high influence in the analy-
zed problem, due to the high value used in
the selected set (probabilities of Normal and
Strong Mutation respectively equal to 60% and
80%). An explanation for the influence of this
operator is the long chromosomal sequence
composed of 35085 bits (5 bits for each time
interval). This fact explains the use of the Evo-
lution for Genetic Algorithms in evaluating
this problem.

Genetic algorithms show a great potential for
solving this and other kind of problems (DELAHAYE.
2005) concerning the airspace traffic systems
needing a high potential of optimization.
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