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Abstract: A method for building neighborhood graphs using morphological operators is presented in
this paper. This method has a segmented image as input, containing objects that will define the graph
vertices. The edges of the graph will be determined by the neighborhood between these objects,
defined by the watershed. We will carry out morphological operations in each partition of the watershed
to define the edges of the graph. These graphs can be used efficiently to solve various problems in
image processing and is also a powerful structure used in mathematical morphology.
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1   INTRODUCTION

Mathematical Morphology [16] is a theory
that studies the decomposition of lattice ope-
rators in terms of some families of simple lattice
elementary operators: erosions, dilations, anti-
erosions and anti-dilations. The combination of
these operators via the operations of inter-
section, union and composition permits the
representation of any lattice operator [1]. When
the lattices considered have a sup-generating
family (i.e., a set of elements that is enough to
create any other element of the lattice via the
supremum operation) the elementary operators
can be characterized by functions from the sup-
generating family into the lattice, that are called
structuring functions.

An example of lattice is the set of functions
from a finite set E⊂⊂⊂⊂⊂Z2 to an interval K⊂⊂⊂⊂⊂Z+, with
the partial order inherited from the usual or-
der relation between integer numbers. The re-
presentation of structuring functions by neigh-
borhood graphs is a powerful model for the
construction of image operators [19,2]. A simi-
lar model of representation in graphs was
proposed by Vincent [18]. In the original model
of Vincent, the graph structure was associated
to the function domain. In model proposed in
[19], it is used to describe the structuring func-

tion. This last model is mathematically more
consistent, since it is a particular case of the
general representation of operators on lattices
that have a sup-generating family and genera-
lizes the representation of classical morpho-
logical image processing operators.

There are many image processing applica-
tions where representation of structuring func-
tions by neighborhood graphs can be done. The
first application is the flat zone [14] (i.e., it's
defined by a translation in K of a subset of E),
which consider the graphs necessary to represent
structuring functions and are reduced to the
ones that have vertices in E and the edges may
represent the adjacency between flat zones. This
model is one of the most powerful approaches
for image segmentation and can be used in the
dynamic of growth [6], because E could represent
image objects, as biological cells, where the cell
boundaries could be given by the application of
some tessellation algorithm on them, reflecting
their proximity under some distance measure.
One example already applied in the biological
realm is the evaluation of the capacity of
production of cellulose through the analysis of
microscopic pulpwood images. The non
productive regions are the ones where the
density of blobs is small. The goal is to segment
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the image to find these regions. This problem
was proposed and first studied in [9]. The idea
of the method is to create a graph, where the
edges are the blobs, and to separate the regions
such that the distance between blobs is larger
than a given value. After that, make a sequence
of morphological operations to detect the
unproductive regions, as decrypted in [19].

Following this introduction, section 2 pre-
sents the basic concepts. Section three descri-
bes the neighborhood graphs built with mor-
phological operators. Finally, section four pre-
sents some conclusions and future directions
for this research.

2   BASIC CONCEPTS

In literature find practical problems of ima-
ge processing using neighborhood graphs, as
seen in the previous section. We present these
section basic concepts to begin the construc-
tion of these graphs. The first step is to esta-
blish the classic forms of neighborhood gra-
phs from a set of points in the plane, known
as explicit images.

2.1  Graph

The Graph Theory examines the interrela-
tionship between those elements of a set V [3].
An element of V is called vertex. The interre-
lationship between the vertices is represented
by a set A of pairs of vertices, i.e., A⊆V2. An
element of A is called edge. A graph G(V,A) is
defined as a structure consisting of a set of
vertices V and a set of edges A. If u and v are
the extreme vertices of an edge a then u is
adjacent v and a inside in u and v. The edge a
with extremes u and v is also denoted by uv.
Two edges with extremes in common are called
adjacent. Two edges with the same extremes
are called parallel or multiple. An edge with
same extremes is called loop. The degree or
number of neighbors of a vertex v in a graph G,
is denoted by gG(v). A graph is simple if it has
no loops and no multiple edges. A graph
G(V,A) is finite if V and A are both finites. Our
studies are restricted to not directed graphs,
simple and finite. A path on a graph is a finite

sequence and not empty P={v0,a1,v1,…,ak,vk}
whose terms are alternately vertices vi and
edges aj, and such that, for all i, 1≤i≤k, the
extremes of ai are vi-1 and vi. We say that P is a
path of v0 until vk and that the vertices v0 and
vk are the origin and the end of P, respectively.
The integer k is the length of P.

If V is a set of points in the plane and A is a
set of edges built by the analysis of neigh-
borhood relations between these points then
we say that G(V,A) is a neighborhood graph.

2.2  Computational Geometry

Computational Geometry [13] is the area of
computer science that studies solutions to
geometric problems. Usually we represent a
point p the plane by its Cartesian coordinates
(x,y), where x and y are real numbers (x,y∈R)
measured from any arbitrary origin over two
orthogonal axes. The total of these points is
the Cartesian plane R2.

A function d:R2×××××R2→→→→→R is called distance if it
has the following properties:

• d(p,p)=0, for all p∈R2;

• d(p,q)=d(q,p), for all q, p∈R2;

• d(p,q)>0, if p≠q, for all q, p∈R2;

• d(p,q)+d(q,r)≥d(p,r), for all q, r, p∈R2.

Let p1=(x1,y1) and p2=(x2,y2) be points, we de-
fine the following distance between p1 and p2:

• Euclidean: de(p1,p2) = sqrt((x1-x2)2+(y1-y2)2);

• City-Block: d1(p1,p2) = |x1-x2|+|y1-y2|;

• Chessboard: d (p1,p2) = max{|x1-x2|+|y1-y2|}.

2.3  Construction of Neighborhood Graphs

Let P be a finite set of n points in the plane,
with Euclidean distance. Here are some methods
to build edges from P [18, 13, 7, 8, 4, 11, 10].

The first method to be presented will be the
Delaunay triangulation. This method has run-
time Θ(nlgn)1 [7]. Given the Delaunay triangu-
lation of P, there are other methods of building

1 See [5] for definition of Θ notation.
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edges P in time O(n), for example, relative
neighborhood graphs, Gabriel graph and mini-
mum spanning tree [18, 13].

2.3.1  Delaunay Triangulation

The Delaunay triangulation determines a
partition plane for the set P where each parti-
tion is a triangle with its extremes in P. The
definition of Delaunay triangulation is obtai-
ned from the definition of the Voronoi dia-
gram, both presented below.

Consider a point pi∈P, we define Voronoi
region of pi, denoted by Z(pi), as follows:

Z(pi) = {p R2: de(p,pi) ≤de(p,pj), ∀j=1,2, ...,n},

where de is the Euclidean distance.

Figure 1: Voronoi ( ) and Delaunay (–) diagrams ([10]).

Note that {Z(pi), i=1,2,…,n} partitioning the
plane in convex regions where the intersection of
two convex is a segment of line, a semi-line or a
line. This decomposition is called Voronoi diagram.

The algorithm watershed or zone of influen-
ce [18] is an approximation of the Voronoi
diagram, because it works in the finite plane,
and considers regions instead of points. In
watershed, regions (convex elements of an im-
plied image) will increase proportionately and
simultaneously until they touch each other.
When this occurs, the items belonging to two
or more regions are part of the zone of influence
in these regions. The Voronoi diagram of P is

also the zone of influence of P if the growth of
the regions with center in P is infinite.

Given the Voronoi diagram of P, the Delau-
nay diagram is not a directed graph G(P,A)
where A is the set of edges defined by

A={pipj:|Z(pi)∩Z(pj)|>1; i,j=1,2,…,n and i≠j},

where |x| is the cardinality of x.

Through this result several other graphs can
be generated in liner time [7] from the Delau-
nay triangulation, as the following ones.

Gabriel Graph

The Gabriel Graph of P is the graph G(P,A),
where A is the set of edges formed by segments
of lines pq, where p and q are points of P and
the circle diameter pq through p and q is free
of points in P, See Figure 2 (the edge dashed
does not belong to the Gabriel graph).

Figure 2: Gabriel graph.

Relative Neighborhood Graphs

pq is an edge of this graph if and only if d(p,r)≥ d
(p,q) or d(q,r)≥d(p,q), ∀r∈P\{p,q}. Note that all ed-
ges of this graph is an edge of the Gabriel graph.

Figure 3: Relative Neighborhood Graphs.
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Minimum Spanning Tree

A graph G(P,A) is a Minimum Spanning Tree
if, for any two points in P exists a sole path
that connects these points and the sum of the
length (Euclidean distance) of the edges is mi-
nimal, see Figure 4. By [12], Theorem 6.1, it is
possible to prove that this is a sub-graph of
Delaunay triangulation.

Figure 4: Minimum Spanning Tree.

2.3.2  Other forms of construction of graphs

We present the following three other me-
thods for the construction of graphs that do
not depend on the Delaunay triangulation.

Maximum distance

Using the Euclidean distance we define a gra-
ph G(P,A), where the edge pq∈A if the distance
between p and q is no greater than a distance d,
see Figure 5. We call this graph of graph of
maximum distance.

Figure 5: Graph of maximum distance d.

k Nearest Neighbor
For each point p∈P, we define an edge pq∈A if

q∈P is one of k nearest neighbor of p, See Figure 6.

Figure 6: Graph of k Nearest Neighbor, where k=1.

We present in this section several ways to
build neighborhood graphs from points in the
plan. Some of these graphs were used by
Barrera and Zampirolli [19] to solve problems
of image processing.

2.4   Mathematical morphology

An elegant form to solve image processing
problems is the utilization of a consistent theo-
retical base. One of these theories is the mathe-
matical morphology, created in the 60's by Jean
Serra and George Matheron at the École Natio-
nale Superiéure des Mines of Paris, in Fontaine-
bleau, France. In this theory, we do transfor-
mations between lattices, which are called
morphological operator. In the mathematical
morphology, we have four classes of basic ope-
rators: dilations, erosions, anti-dilations and
anti-erosions, which are called elementary
lattice operators. Banon and Barrera [1] proved
that all of the morphological operators can be
obtained from combinations of these elemen-
tary lattice operators, together with the union
and intersection operations. Besides, when the
lattices own a sup-generating family, these
operators can be characterized by structuring
functions.

The representation of structuring functions
by neighborhood graphs is a powerful model
for the construction of image operators. This
model, that is a conceptual improvement of
the one proposed by Vincent [18], permits a
natural polymorphic extension of classical
software for image processing by Mathema-
tical Morphology. These systems constitute a
complete framework for implementations of
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connected filters, that are one of the most
modern and powerful approaches for image
segmentation, and of operators that extract
information from populations of objects in
images. In [2], besides presenting the formu-
lation of the model, presents the polymorphic
extension of a system for morphological image
processing and some applications of it in
image analysis.

Let Z be the integer numbers set, E⊂⊂⊂⊂⊂Z2 the
domain of the image and K=[0,k]⊂⊂⊂⊂⊂Z an integer
numbers interval representing the possible
gray-scale of the image. The translation inva-
riant dilate operator in gray-scale, δb:KE→KE

(KE, it reads set of the functions of E in K), is
defined as [15, 17]:

δb(f)(x) = max{f(y) + b(x-y): y∈(Bt+x) ∩ E},

where f∈KE, x∈E, B∈P(Z2) (P(E) is the set of the
parts of E and B is called structuring element),
Bt={–b:b∈B} is transport of B, B+x={y+x, y∈B}
(translation of B by x) and b is a structuring
function defined on B with b:B→Z. When the b
elements are all zeros, b is called flat structuring
function, otherwise, non-flat. Let v∈Z be, we de-
fine t→t v in K by

0+v =0 ∀v∈Z;

t+v =0 if t >0 and t+v≤0;

t+v =t+v if t >0 and 0 t+v≤k;

t+v =k if t >0 and t+v>k;

If a structuring function is a graph, we have

b(x)={y∈E:d(y,x)≤1}  (x∈E)

where E is the set of vertices of a graph and
d(y,x) is the distance between y and x of this
graph. See in Figure 7 an example of expansion
based on neighborhood graphs2.

2 The Figure 7 is simplified, the structuring function is given
by neighbors of each corner of the graph.

Figure 7: Dilation by a flat structuring function, with r=1.

2.5  Images partition and labeled

We define partition image as the division of
an image in partitions, where the union of all
the partitions is the image and the intersection of
two separate partitions is empty. The partitions
are differentiated by different gray scale. See
an example of partition image in Figure 8-a.

We also use a definition of approximately
partition image, where there is a line at the
intersection of any two adjacent partitions. See
an example in Figure 8-b.

Figure 8: (a) Partition image and (b) partition image, with
dividing line.

From the partition image it is possible to
create a neighborhood graph, where vertices
can be the centroid of each partition and the
edges connect the two neighboring partitions.
In this paper, we will build neighborhood gra-
phs from an image partition using morpho-
logical operators, as detailed in the section 3.
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3  CONSTRUCTION OF NEIGHBORHOOD
GRAPHS BY MORPHOLOGICAL
OPERATORS

We present the construction of a neighbor-
hood graph as follows: consider with input ima-
ge of the segmentation of human muscle cells,
Figure 9-(a). The Figure 9-(b) shows the dilation
of the centroid of each cell, for better viewing.
So, a centroid of a cell is represented by a pixel
and the set of all centroids will define the set of
edges of the graph.

Figure 9: (a) input image and (b) centroid of each cell.

To identify each edge of the neighborhood
graph, consider the images labeled and water-
shed, Figure 10 (a) and (b), respectively. This
view of the numbers of the labels was inspired
in the software documentation mmoph, in de-
monstration mmdblob - Demonstrate blob mea-
surements and display3.

3 www.mmorph.com

Figure 10: (a) label image and (b) watershed image.

Figure 11 defines the image f labeled of the
negated watershed. This image, disregarding
the numbers of labels, will be used to find the
neighbors of each label.

Figure 11: Label negated the watershed, with the numbers
representing the gray levels of each label.

The Figure 12 presents a binary image, f
1
,

only with the first label's image f. In Figure, g
1

is the dilation of f
1
 by a structuring function

b=3 3, then, it does the intersection with f
subtracted of f

1
, i.e.,

g
1
=(f

1
∧δ

b
(f

1
))–f

1
.

The image c
1
 is the reconstruction of g

1
 res-

tricted to f, i.e.,

c
1
=(f⊕

g
1

b)∞.

This image c
1
 defines the neighbors edges

of the first label's image f.

Figure 12: f
1
 binary image the first label's image f, g

1
=(f

1
∧δ

b
(f
1
))

–f
1
, reconstruction c

1
=(f⊕g

1
b)∞.
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Figure 13 repeats this transformation to the
label 8. So, the construction of the neighbor-
hood graph of the image f can be generalized
as follows: let N be the number of vertices (or
labels of f) of the graph. Then ∀i∈N and N≥2,
let Ni be all the edges to neighboring vertex i,
defined as follows:

Ni =   ci,

where   ci returns to the gray scale of image ci.

Figure 13: f
i
 binary image the first label's image f, g

i
=(f

i
∧δ

b
(f
i
))

–f
i
, reconstruction c

i
=(f⊕g

i
b)∞.

We present the following neighborhood
graph generated from the image of Figure 9,
where the first line defines a structuring
function. The second line defines size image,
(x,y) and the type graph. The third line defi-
nes the number of nodes of the graph, in this
case with 18 vertices. The following 18 rows
define each edge (number of neighbors, value
of the vertex, coordinates (x,y) and its
neighbors).

Figure 14 illustrates the file before drawing
a graph, along with the image of the targeted
cell of human muscle.

Figure 14: Illustration of graph linking the cells.

   MM_STRUCT   % defines a structuring function
   2  128  128    1 % defines size image 128x128 and the type graph
  18     % number of nodes of the graph

  % number of neighbors; value of the vertices; x ; y ; its neighbors

   2    0   28    5    2    4  %%%% Figure 12

   4    0   56    5    1    3    4    7
   4    0   80   17    2    5    7    9
   5    0   22   25    1    2    6    7    8
   3    0  108   34    3    9   10
   3    0    6   44    4    8   13
   6    0   55   46    2    3    4    8    9   11

   5    0   27   57    4    6    7   11   13  %%%% Figure 13

   6    0   78   59    3    5    7   10   11   12
   4    0  113   64    5    9   12   14
   7    0   52   83    7    8    9   12   13   15   16
   5    0   91   86    9   10   11   14   15
   5    0   21   90    6    8   11   16   17
   4    0  114  103   10   12   15   18
   5    0   73  112   11   12   14   16   18
   4    0   44  122   11   13   15   17
   2    0   10  124   13   16
   2    0  104  124   14   15

4  CONCLUSION

In this paper we have presented a way to
build neighborhood graphs by morphological
operators. This method used a segmented ima-
ge as input, containing objects that define the
graph vertices. The edges of the graph were
defined by the neighborhood between these
objects, defined by the watershed.

Using the basic operations in images of in-
tersection, subtraction and negation, in addi-
tion to the operators morphological of dilation,
reconstruction and labeling, it was possible to
build a graph from the watershed, represen-
ting the edges of each vertex.
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These graphs can be used for the construc-
tion of morphological operators based on
neighborhood graphs [19]. This model permits
a complete equality between theory and imple-
mentation, and leads to a natural polymorphic
extension of morphological image processing
software. Using the conceptual model pro-

posed we have implemented an extension of
the MMach toolbox and used it for the solution
of some image analysis problems: detection
of fracture lines in porous materials, iden-
tification of non productive regions of Euca-
lypt pulpwood and segmentation of the faces
of a block.




