ALDOSTERONA E HIPERTROFIA DO MIOCÁRDIO

Autores

  • Mauro Cesar Isoldi Universidade Federal de Ouro Preto - UFOP
  • Aleçandra Maria Maciel Isoldi Colégio Arquidiocesano de Ouro Preto - CAOP

DOI:

https://doi.org/10.13037/rbcs.vol11n37.1759

Palavras-chave:

aldosterona, hipertrofia, cardiomiócitos, mecanismos de ação intracelular.

Resumo

Aldosterona atua em seus tecidos alvos classicamente por ligar-se a seu receptor mineralocorticóide (MR), localizado na região externa da membrana nuclear. Uma vez ativado, o agora então formado complexo receptor-aldosterona transloca-se para o núcleo, ligando-se a regiões responsivas cognatas do DNA, vindo assim ativar a transcrição de genes alvos. Além desse mecanismo conhecido como clássico para a aldosterona, outro mecanismo, mais rápido, envolvendo possivelmente receptores de membrana tem sido descrito. Ativação de PLC com clivagem de fosfolipídios de membrana e conseqüentemente aumento das concentrações de IP3, Ca2+ e AMPc vem sendo descritos na literatura, em ensaios celulares, após adição de aldosterona. Esses mecanismos têm sido denominados de não-genômicos ou simplesmente diretos do referido hormônio. Pacientes com aldosteronismo primário têm um aumento de risco de hipertrofia do ventrículo esquerdo comparados a pacientes hipertensos de severidade comparável. Porém o mecanismo de tal evento é ainda desconhecido. Trabalhos recentes têm demonstrado a participação de uma AKAP como molécula central em mecanismos que desencadeiam a hipertrofia de cardiomiócitos. Nesses trabalhos a ativação de ERK-5 além da participação de AMPc e Ca2+ foram predominantes no desencadear do processo hipertrófico. Nossa proposta aqui foi descrever os mecanismo intracelulares que levam as células de cardiomiócitos a desenvolverem hipertrofia mediada pela aldosterona, tanto por sua via clássica quanto pela direta ou não genômica.

Downloads

Biografia do Autor

Mauro Cesar Isoldi, Universidade Federal de Ouro Preto - UFOP

Departamento de Ciencias Biológicas (DECBI), Núcleo de Pesquisa em Ciências Biológicas (NUPEB)

Referências

42. Dodge KL, Khouangsathiene S, Kapiloff MS, Mouton

R, Hill EV, Houslay MD, Langeberg LK, Scott JD. mAKAP

assembles a protein kinase A/PDE4 phosphodiesterase

cAMP signaling module. EMBO J. 2001 Apr; 20(8):1921-30.

43. Dodge-Kafka L, Soughayer J, Pare GC, Carlisle Michel

JJ, Langeberg LK, Kapiloff MS, Scott JD. The protein kinase

A anchoring protein mAKAP coordinates two integrated cAMP

effector pathways. Nature. 2005 Sep; 437(7058):574-8.

44. Kapiloff MS, Jackson N, Airhart N. mAKAP and the

ryanodine receptor are part of a multi-component signaling

complex on the cardiomyocyte nuclear envelope. J Cell

Sci. 2001 Sep; 114(Pt17):3167-76.

45. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff

D, Rosemblit N, Marks AR. PKA phosphorylation dissociates

FKBP12.6 from the calcium release channel (ryanodine

receptor): defective regulation in failing hearts. Cell. 2000

May; 101(4):365-76.

46. Pare GC, Bauman AL, McHenry M, Michel JJ, Dodge-

Kafka KL, Kapiloff MS. The mAKAP complex participates in

the induction of cardiac hypertrophy by adrenergic receptor

signaling. J Cell Sci. 2005 Dec; 118(Pt23):5637-46.

47. Ruehr ML, Russell MA, Ferguson DG, Bhat M, Ma J,

Damron DS, Scott JD, Bond M. Targeting of protein kinase

A by muscle A kinase-anchoring protein (mAKAP) regulates

phosphorylation and function of the skeletal muscle ryanodine

receptor. J Biol Chem. 2003 Jul; 278(27):24831-6.

48. Estrada M, Liberona JL, Miranda M, Jaimovich E.

Aldosterone- and testosterone-mediated intracellular calcium

response in skeletal muscle cell cultures. Am J Physiol

Endocrinol Metab. 2000 Jul; 279(1):E132-9.

49. Harvey BJ, Higgins M. Nongenomic effects of aldosterone

on Ca2+ in M-1 cortical collecting duct cells. Kidney Int.

2000 Apr; 57(4):1395-403.

50. Christ M, Wehling M. Rapid actions of aldosterone:

lymphocytes, vascular smooth muscle and endothelial

cells. Steroids. 1999 Jan-Feb; 64(1-2):35-41.

51. Gros R, Ding Q, Chorazyczewski J, Pickering JG,

Limbird LE, Feldman RD. Adenylyl cyclase isoform-selective

regulation of vascular smooth muscle proliferation and

cytoskeletal reorganization. Circ Res. 2006 Oct; 99(8):845-52.

52. Ma TK, Kam KK, Yan BP, Lam YY. Renin-angiotensinaldosterone

system blockade for cardiovascular diseases:

current status. Br J Pharmacol. 2010 Jul; 160(6):1273-92.

53. Byrne JA, Grieve DJ, Cave AC, Shah AM. Oxidative stress

and heart failure. Arch Mal Coeur Vaiss. 2003 Mar; 96(3):214-21.

54. Matavelli LC, Zhou X, Frohlich ED. Hypertensive renal

vascular disease and cardiovascular endpoints. Curr Opin

Cardiol. 2006 Jul; 21(4):305-9.

55. Grieve DJ, Byrne JA, Cave AC, Shah AM. Role of

oxidative stress in cardiac remodelling after myocardial

infarction. Heart Lung Circ. 2004 Jun; 13(2):132-8.

56. Dhalla NS, Saini-Chohan HK, Rodriguez-Leyva D,

Elimban V, Dent MR, Tappia PS. Subcellular remodelling

may induce cardiac dysfunction in congestive heart failure.

Cardiovasc Res. 2009 Feb; 81(3):429-38.

57. Sadoshima J, Izumo S. Molecular characterization of

angiotensin II-induced hypertrophy of cardiac myocytes

and hyperplasia of cardiac fibroblasts. Critical role of the

AT1 receptor subtype. Circ Res. 1993 Sep; 73(3):413-23.

58. Lorell BH. Role of angiotensin AT1, and AT2 receptors

in cardiac hypertrophy and disease. Am J Cardiol. 1999

Jun; 83(12A):48H-52H.

59. Takeda Y, Yoneda T, Demura M, Miyamori I, Mabuchi H.

Cardiac aldosterone production in genetically hypertensive

rats. Hypertension. 2000 Oct; 36(4):495-500.

60. Kagiyama S, Matsumura K, Fukuhara M, Sakagami

K, Fujii K, Iida M. Aldosterone-and-salt-induced cardiac

fibrosis is independent from angiotensin II type 1a receptor

signaling in mice. Hypertens Res. 2007 Oct; 30(10):979-89.

61. Matsumura K, Fujii K, Oniki H, Oka M, Iida M. Role of

aldosterone in left ventricular hypertrophy in hypertension.

Am J Hypertens. 2006 Jan; 19(1):13-8.

62. Suzuki G, Morita H, Mishima T, Sharov VG, Todor

A, Tanhehco EJ, Rudolph AE, McMahon EG, Goldstein

S, Sabbah HN. Effects of long-term monotherapy with

eplerenone, a novel aldosterone blocker, on progression

of left ventricular dysfunction and remodeling in dogs with

heart failure. Circulation. 2002 Dec; 106(23):2967-72.

63. Hayashi M, Tsutamoto T, Wada A, Tsutsui T, Ishii C, Ohno

K, Fujii M, Taniguchi A, Hamatani T, Nozato Y, Kataoka K,

Morigami N, Ohnishi M, Kinoshita M, Horie M. Immediate

administration of mineralocorticoid receptor antagonist

spironolactone prevents post-infarct left ventricular remodeling

associated with suppression of a marker of myocardial collagen

synthesis in patients with first anterior acute myocardial

infarction. Circulation. 2003 May; 107(20):2559-65.

52

RBCS Artigos de Revisão

Revista Brasileira de Ciências da Saúde, ano 11, nº 37, jul/set 2013

Referências

64. Pitt B, Reichek N, Willenbrock R, Zannad F, Phillips RA,

Roniker B, Kleiman J, Krause S, Burns D, Williams GH.

Effects of eplerenone, enalapril, and eplerenone/enalapril

in patients with essential hypertension and left ventricular

hypertrophy: the 4E-left ventricular hypertrophy study.

Circulation. 2003 Oct; 108(15):1831-8.

65. Okoshi MP, Yan X, Okoshi K, Nakayama M, Schuldt

AJ, O’Connell TD, Simpson PC, Lorell BH. Aldosterone

directly stimulates cardiac myocyte hypertrophy. J Card

Fail. 2004 Dec; 10(6):511-8.

66. Yang J, Chang CY, Safi R, Morgan J, McDonnell DP, Fuller

PJ, Clyne CD, Young MJ. Identification of ligand-selective

peptide antagonists of the mineralocorticoid receptor using

phage display. Mol Endocrinol. 2011 Jan; 25(1):32-43.

67. Dooley R, Harvey BJ, Thomas W. Non-genomic actions

of aldosterone: from receptors and signals to membrane

targets. Mol Cell Endocrinol. 2012 Mar; 350(2):223-34.

68. Grossmann C, Gekle M. New aspects of rapid aldosterone

signaling. Mol Cell Endocrinol. 2009 Sep; 308(1-2):53-62.

69. Araujo CM. Ação direta da aldosterona em cardiomiócitos

de ratos. Tese [Mestrado em Ciências Biológicas] -

Universidade Federal de Ouro Preto; 2010.

70. Yoshida Y, Morimoto T, Takaya T, Kawamura T, Sunagawa

Y, Wada H, Fujita M, Shimatsu A, Kita T, Hasegawa

K. Aldosterone signaling associates with p300/GATA4

transcriptional pathway during the hypertrophic response

of cardiomyocytes. Circ J. 2010 Jan; 74(1):156-62.

71. López-Andrés N, Iñigo C, Gallego I, Díez J, Fortuño MA.

Aldosterone induces cardiotrophin-1 expression in HL-1 adult

cardiomyocytes. Endocrinology. 2008 Oct; 149(10):4970-8.

72. Doi T, Sakoda T, Akagami T, Naka T, Mori Y, Tsujino T,

Masuyama, Ohyanagi M. Aldosterone induces interleukin-18

through endothelin-1, angiotensin II, Rho/Rho-kinase, and

PPARs in cardiomyocytes. Am J Physiol Heart Circ Physiol.

2008 Sep; 295(3):H1279-87.

73. Mohammed SF, Ohtani T, Korinek J, Lam CS, Larsen

K, Simari RD, Valencik ML, Burnett JC Jr, Redfield MM.

Mineralocorticoid accelerates transition to heart failure

with preserved ejection fraction via “nongenomic effects”.

Circulation. 2010 Jul; 122(4):370-8.

74. Stas S, Whaley-Connell A, Habibi J, Appesh L, Hayden

MR, Karuparthi PR, Qazi M, Morris EM, Cooper SA, Link CD,

Stump C, Hay M, Ferrario C, Sowers JR. Mineralocorticoid

receptor blockade attenuates chronic overexpression of the

renin-angiotensin-aldosterone system stimulation of reduced

nicotinamide adenine dinucleotide phosphate oxidase and

cardiac remodeling. Endocrinology. 2007 Aug; 148(8):3773-80.

75. Brilla CG, Matsubara LS, Weber KT. Antifibrotic effects of

spironolactone in preventing myocardial fibrosis in systemic

arterial hypertension. Am J Cardiol. 1993 Jan; 71(3):12A-16A.

76. Brilla CG, Zhou G, Matsubara L, Weber KT. Collagen

metabolism in cultured adult rat cardiac fibroblasts: response

to angiotensin II and aldosterone. J Mol Cell Cardiol. 1994

Jul; 26(7):809-20.

77. Campbell SE, Janicki JS, Weber KT. Temporal differences

in fibroblast proliferation and phenotype expression in

response to chronic administration of angiotensin II or

aldosterone. J Mol Cell Cardiol. 1995 Aug; 27(8):1545-60.

78. Brilla CG, Weber KT. Mineralocorticoid excess, dietary

sodium, and myocardial fibrosis. J Lab Clin Med. 1992

Dec; 120(6):893-901.

79. Rocha R, Martin-Berger CL, Yang P, Scherrer R, Delyani

J, McMahon E. Selective aldosterone blockade prevents

angiotensin II/salt-induced vascular inflammation in the rat

heart. Endocrinology. 2002 Dec; 143(12):4828-36.

80. Marney AM, Brown NJ. Aldosterone and end-organ

damage. Clin Sci (Lon). 2007 Sep; 113(6):267-78.

81. Pechánová O, Bernátová I, Pelouch V, Babál P. L-NAMEinduced

protein remodeling and fibrosis in the rat heart.

Physiol Res. 1999; 48(5):353-62.

82. Ferrini MG, Vernet D, Magee TR, Shahed A, Qian A,

Rajfer J, Gonzalez-Cadavid NF. Antifibrotic role of inducible

nitric oxide synthase. Nitric Oxide. 2002 May; 6(3):283-94.

83. Carlström M, Persson AE, Larsson E, Hezel M,

Scheffer PG, Teerlink T, Weitzberg E, Lundberg JO.

Dietary nitrate attenuates oxidative stress, prevents

cardiac and renal injuries, and reduces blood pressure

in salt-induced hypertension. Cardiovasc Res. 2011

Feb; 89(3):574-85.

84. Hunter JC, Zeidan A, Javadov S, Kilic A, Rajapurohitam

V, Karmazyn M. Nitric oxide inhibits endothelin-1-induced

neonatal cardiomyocyte hypertrophy via a RhoA-ROCKdependent

pathway. J Mol Cell Cardiol. 2009 Dec;

47(6):810-8.

Downloads

Publicado

2014-01-23

Edição

Seção

ARTIGOS DE REVISÃO

Artigos Semelhantes

1 2 3 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.